In this study, we suggested a new approach method forecasting distribution demand of urban rail transit usign fuzzy control, with intend to reflect irregularity and various functional relationship between trip length and distribution demand. To establish fuzzy control model and test this model, the actual trip volume(production, attraction and distribution volume) and trip length (space distance between a departure and arrival station) of Daegu subway line 1 were used. Firstly, usign these data we established a fuzzy control model, nd the estimation accuracy of the model was examined and compared with that of generalized gravity model. The results showed that the fuzzy control model was superior to gravity model in accuracy of estimation. Therefore, wwe found that fuzzy control was able to be applied as a effective method to predict the distribution demand of urban rail transit. Finally, to increase the estimation precision of the model, we expect studies that define membership functions and set up fuzzy rules organized with neural networks.
In this paper we propose the new binary image matching algorithm called the Fuzzy logic induced Hausdorff Distance(FHD) for finding the maximally matched image with the query image. The membership histogram is obtained by normalizing the cardinality of the subset with the corresponding radius after obtaining the distribution of the minimum distance computed by the Hausdroff distance between two binary images. in the proposed algorithm, The fuzzy influence method Center of Gravity(COG) is applied to calculate the best matching candidate in the membership function described above. The proposed algorithm shows the excellent results for the face image recognition when the noise is added to the query image as well as for the character recognition.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.05a
/
pp.109-112
/
2006
본 논문은 클래스들의 대표값들과 입력 벡터와의 거리를 사용한 새로운 퍼지 학습법칙을 제안한다. 이 새로운 퍼지 학습을 supervised IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 이 새로운 신경회로망은 안정성을 유지하면서도 유연성을 가지고 있다. iris 데이터를 사용하여 테스트한 결과 supervised IAFC 신경회로망 4는 오류 역전파 신경회로망과 LVQ 알고리즘보다 성능이 우수하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.4
/
pp.354-358
/
2001
This paper presents a fuzzy neural network model which solves the underutilization problem. This fuzzy neural network has both stability and flexibility because it uses the control structure similar to AHT(Adaptive Resonance Theory)-l neural network. And this fuzzy nenral network does not need to initialize weights and is less sensitive to noise than ART-l neural network is. The learning rule of this fuzzy neural network is the modified and fuzzified version of Kohonen learning rule and is based on the fuzzification of leaky competitive leaming and the fuzzification of conditional probability. The similarity measure of vigilance test, which is performed after selecting a winner among output neurons, is the relative distance. This relative distance considers Euclidean distance and the relative location between a datum and the prototypes of clusters. To compare the performance of the proposed fuzzy neural network with that of Kohonen Self-Organizing Feature Map the IRIS data and Gaussian-distributed data are used.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.301-304
/
2007
학습법칙은 신경회로망의 성능에 중요한 영향을 미친다. 본 논문은 데이터와 클러스터들의 대표값들 사이의 거리를 고려하여 학습률을 정하는 새로운 퍼지 학습법칙을 제안한다. 클러스터들의 대표값을 조정할 때, 이러한 고려는 outlier에 비하여 결정경계선 근처에 있는 데이터의 반영도를 높임으로써 outlier의 클러스터의 대표값에 미치는 영향도를 낮출 수 있다. 따라서 outlier들이 결정경계선을 악화시키는 것을 방지할 수 있다. 이 새로운 퍼지 학습법칙을 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 제안한 퍼지 신경회로망과 다른 감독 신경회로망들의 성능을 비교하기 위하여 iris 데이터를 사용하였다. iris 데이터를 사용하여 테스트한 결과 제안한 퍼지 신경회로망의 성능이 우수함을 보였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.195-198
/
2002
본 논문에서는 영상 해석 알고리즘의 하나인 원형 패턴 벡터 알고리즘과 퍼지 추론을 사용하여 손가락으로 커서를 제어하는 인터페이스를 구현하였다. 최대 원형 이동법을 이용하여 물체의 무게 중심점을 찾아서 그 점에서 원형 패턴 알고리즘을 적용하면 외곽가지 거리 스펙트럼을 추출할 수 있다. 손에 대한 조건을 제시하여 일치하는 스펙트럼이 추출되면 손으로 인식하게 하였다. 커서의 방향제어는 크게 수평 방향과 수직 방향으로 나눌 수 있다. 커서의 수평 방향은 거리 스펙트럼에 의해 지시 손가락 부분을 찾아서 평면 좌표로 해석하여 제어 하였고, 커서의 수직 방향은 최대 원형의 크기와 손의 최대 크기를 입력 받아 퍼지 추론하여 커서의 위치를 제어 하였다. 퍼지 추론을 이용함으로써 기존의 불연속적인 커서의 수직 방향 제어를 좀 더 유연하고 연속적으로 제어 할 수 있었다.
Journal of the Korean Institute of Intelligent Systems
/
v.7
no.2
/
pp.66-69
/
1997
In this paper a fuzzy similarity measure is proposed. The proposed fuzzy similarity measure considers the relative
distance between data and cluster centers in addition to the Euclidean distance to decide the degree of similarity.
The boundary of a cluster center is constracted on the competitive region and expanded on the less competitive region.
This result shows the possibility of using relative distance as a similarity measure.
Journal of the Korean Institute of Intelligent Systems
/
v.17
no.1
/
pp.1-6
/
2007
The similarity measure is derived with distance measure, and the proposed similarity measure is proved to verily the usefulness. Conventional similarity measure which is constructed through fuzzy number and Center of Gravity(COG) is introduced, furthermore two similarity measures are compared through various types of membership function.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.369-372
/
2022
본 논문에서는 장애물 객체의 회전 벡터를 이용하여 VR 환경에서의 효율적으로 음향 처리 및 합성하는 방법을 제안한다. 현실에서 소리와 장애물이 있을 때, 소리는 장애물의 형태에 따라 퍼지면서 전파되는 형태를 보여준다. 이 같은 특징을 가상현실 환경에 유사하게 음향 처리하고자 하며 이를 위해 장애물 객체의 위치와 소리의 근원지 위치를 입력으로 소리의 전파 형태를 근사한다. 이때 모서리 부근에서 표현되는 소리의 회전을 계산하기 위해 장애물의 회전벡터(Curl vector)를 기반으로 소리의 회전을 추출하였으며, 장애물 형태를 컨볼루션(Convolution)하여 소리가 바깥 방향으로 전파되는 형태를 모델링한다. 또한, 장애물과 소리 벡터 사이의 거리, 소리 근원지와 소리 벡터 사이의 거리를 계산하여 소리의 크기를 감쇠 시켜 주며, 최종적으로 장애물 주변으로 퍼지는 벡터 모양인 외부벡터를 합성하여 장애물로부터 외부로 퍼지는 벡터의 방향을 설정한다. 본 논문에서 제안하는 방법을 이용한 소리는 장애물과의 거리와 형태를 고려하여 퍼지는 사운드 벡터 형태를 보여주며, 소리 위치에 따라 소리 감소 패턴이 변경되고, 장애물 모양에 따라 흐름이 조절되는 결과를 보여준다. 이 같은 실험은 실제 현실에서 소리가 장애물의 모양에 따라 나타나는 소리의 변화 및 패턴을 거의 유사하게 표현할 수 있다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.300-303
/
2007
지문자는 청각장애인이 사용하는 수화로 표현하지 못하는 한글 문자를 알파벳으로 표시하기위한 손 제스처이다. 본 논문에서는 추출된 손 영역의 무게 중심과 퍼지 논리를 이용하여 지문자를 인식하는 알고리즘을 제안하고, 한글 문자를 표현하는 시스템을 개발한다. USB 카메라로부터 얻어진 영상에서 히스토그램을 이용하여 손의 피부색 영역을 추출하고, 영상 마스크를 이용하여 피부색이 아닌 배경 영역을 제거한다. 문턱 값을 사용하여 얻어진 이진화된 영상에서 손의 영역을 검출하고, 무게 중심을 이용하여 손 중심과 손가락 끝의 거리를 측정한다. 얻어진 거리 정보에 퍼지 기법을 적용하여 손가락의 굽힘 정도를 판단하고, 손 모양 데이터베이스에서 손가락 굽힘 정도와 가장 근사한 한글 문자를 선택한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.