Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.449-451
/
2003
패턴 분류 문제에서 수치적 속성일 경우 퍼지 적용은 효과적인 결과를 보인다는 것은 많은 연구를 통해 알려졌다. 하지만 퍼지를 적용한 패턴분류의 결과는 소속함수의 모양과 개수에 따라 크게 영향을 받는다는 문제점을 가지고 있다. 따라서 이러한 문제점은 퍼지를 쉽게 응용분야에 적용시키지 못하는 원인이 된다. 따라서 본 논문에서는 자동으로 소속함수를 정의할 수 있는 소속함수 학습 방법을 제안한다. 제안한 방법1)은 Penalty연산과 Reward연산을 통해 소속함수가 학습되고 Coverage연산을 통해 소속함수 개수가 학습된다. 제안된 방법의 가능성을 확인하기 위해 벤치마크 데이터 중 Iris, Appendicitis, Breast Cancer를 사용하여 기존 방법과 비교한다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2003.05a
/
pp.484-489
/
2003
본 논문에서는 역전파 알고리즘의 성능 개선을 위해 퍼지 논리 시스템을 이용한 학습률 자동 조정 방법을 제안한다. 제안된 방법은 목표값과 출력값의 차이에 대한 절대값이 $\varepsilon$ 보다 적거나 같으면 정확성으로 분류하고 크면 부정확성으로 분류한다. 정확성의 총 개수를 퍼지 논리 시스템에 적용하여 학습률과 모멘텀을 동적으로 조정한다. 제안된 방법을 XOR 문제와 숫자패턴 문제에 적용하여 실험한 결과, 기존의 역전파 알고리즘, 모멘텀 방식, Jacob의 delta-bar-delta 방식보다 성능이 개선됨을 확인하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.03a
/
pp.99-102
/
1998
본 논문에서는 복잡하고 비선형적인 시스템의 최적 모델링을 우해서 지능형 퍼지-뉴럴네트워크의 최적 모델 구축을 위한 방법을 제안한다. 기본 모델은 퍼지 추론 시스템의 언어적인 규칙생성의 장점과 뉴럴 네트워크의 학습기능을 결합한 FNNs 모델을 사용한다. FNNs 모델의 퍼지 추론부는 간략추론이 사용되고, 학습은 요류 역전파 알고리즘을 사용하여 다른 모델들에 비해 학습속도가 빠르고 수렴능력이 우수하다. 그러나 기본 모델은 주어진 시스템에 대하여 퍼지 공간을 균등하게 분할하여 퍼지 소속을 정의한다. 이것은 비선형 시스템의 모델링에 있어어서 성능을 저하시켜 최적의 모델을 얻기가 어렵다. 논문에서는 주어진 데이터의 특성을 부여한 공간을 설정하기 위하여 클러스터링 알고리즘을 사용한다. 클러스터링 알고리즘은 주어진 시스템에 대하여 상호 연관성이 있는 데이터들끼리 특성을 나누어 몇 개의 클래스를 이룬다. 클러스터링 알고리즘을 사용하여 초기 FNNs 모델의 퍼지 공간을 나누고 소속함수를 정의한다. 또한, 최적화 기법중의 하나로 자연선택과 자연계의 유전자 메카니즘에 바탕을 둔 탐색 알고리즘인 유전자 알고리즘을 사용하여 주\ulcorner 진 모델에 대하여 최적화를 수행한다. 또한 본 연구에서는 학습 및 테스트 데이터의 성능 결과의 상호 균형을 얻기 위한 하중값을 가긴 성능지수가 제시된다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.289-295
/
1998
본 논문은 빠른 학습과 정확한 근사 능력을 갖는 새로운 CMAC 신경망 기반 퍼지 제어기르 제안한다. 제안한 CMAC 신경망 기반 퍼지 제어기(CBFLC)는 한 학습 주기 동안 전향 및 역전파 연산시 신경망내 유닛중 극히 일부분만이 활성화되어 학습에 참가하므로 학습 시간이 매우 빠르고, 비퍼지화 연산시 소속 함수의 중심값 뿐 아니라 폭을 동시에 고려하여 정확한 근사화를 얻는다. 제안한 퍼지 제어기내 입?출력 소속 함수의 중심값 및 폭 등의 구조적 파라메터들은 역전파 알고리즘에 의해 갱신된다. 제안한 CMAC 신경망 기반 퍼지 제어기를 트럭 후진 주차문제에 적용하여 근사화 능력 및 제어 성능면에서 여러 다른 퍼지 제어기들과 비교한다.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.641-642
/
2020
최근 교육서비스 시장은 학습자의 수준을 고려한 수준별 교육으로 나아가고 있다. 이때 학습자 수준의 진단을 위하여 다양한 방법의 진단평가가 연구되고 있으며 평가 기준의 언어적 모호함을 해결하기 위해 퍼지 이론을 도입한 평가 방법 역시 하나의 방법으로 대두되고 있다. 본 논문에서는 컴퓨팅 사고력 교육 역시 수준별 교육으로 나아가기 위해 컴퓨팅 사고력 학습을 계층화 하고, 학습자가 학습 시작전 퍼지 추론을 바탕으로 한 진단 평가를 실시하여 학습자 수준에 맞는 교육 커리큘럼의 진입점을 찾아 맞춤형 컴퓨팅 교육을 제공할 수 있도록 하는 퍼지 평가 시스템을 연구·개발한다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.613-615
/
2004
수치적인 데이터를 분류하기 위한 대표적인 방법은 퍼지 규칙을 사용하는 것이다. 하지만 퍼지 규칙을 이용하는 방법은 퍼지 소속 함수를 어떻게 정의하느냐에 따라 퍼지 분류의 성능이 크게 영향을 받는다는 문제점이 있다. 따라서 퍼지 규칙을 쉽게 이해하기 위해서는 가능한 퍼지 규칙의 수를 적게 유지하는 것이 필요하다. 본 논문에서는 효과적이며 이해하기 쉬운 퍼지 규칙을 생성하기 위해 기울기 강하법을 기반으로 하는 소속 함수 학습 방법을 제안한다 에러율을 감소하기 위해 Penalty 연산과 Reward 연산을 통해 소속 함수가 반복적으로 조절된다 새로운 소속 함수는 Coverage 연산에 의해 생성된다. 또한 이해하기 쉬운 퍼지 규칙을 최적화하기 위해 학습된 소속 함수골 퍼지 결정 트리에 적용한다. 본 논문에서 제안한 알고리즘의 타당성을 확인하기 위해 벤치 마크 데이터인 Iris, Wisconsin Breast Cancer, Plma, Bupa 데이터를 이용하여 실험 결과를 보인다. 실험 결과를 통해 제안한 알고리즘이 기존의 C4.5와 FID 3.1 알고리즘보다 더 효과적이거나 비슷한 성능을 보임을 알 수 있다.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.6
/
pp.742-746
/
2006
Evaluation of learning ability of students is classified a step of diagnostic, formative and summative evaluation. This step-by-step evaluation is the standard of synthesis judgement, from a student's prior learning of preparation state to devotion of learning process and even learning result. In this paper, we propose the method of synthesis learning evaluation which is considered evaluation of each step in using fuzzy inference. In order to get objective evaluation of learning ability, we applied to the weights by evaluation steps. And we reflected defuzzification values of final evaluation membership function interval obtained by fuzzy inference about diagnostic, formative and summative evaluation. As a result, it processes definite inference ensures objectivity and shows validity of the synthesis evaluation method.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.1
/
pp.497-503
/
2005
본 논문에서는 퍼지 RBF 네트워크를 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지 추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4방향 윤광선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 퍼지 C-Means 알고리즘을 이용한 퍼지 RBF 네트워크를 제안하여 개별 식별자에 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출방법이 개선되었다. 그리고 기존의 ART2 기반 RBF 네트워크보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 있어서 우수함을 확인하였다.
This paper suggests fuzzy-based Segment-Boost method and an effective method for face recognition using the fuzzy-based Segment-Boost. Fuzzy-based Segment-Boost eliminates the limitations of Segment-Boost, and it guarantees improved learning performance and the stability of the performance. By using the fuzzy theory, fuzzy-based Segment-Boost optimizes the selection number of sub-vectors, and leads the optimized learning performance. The fuzzy controller designed in this paper measures learning performance of the fuzzy-based Segment-Boost, and it controls the selection number of sub-vectors by inferring the optimized selection number. The simulation results show that the fuzzy controller inferred the selection number which is very approximate to the true optimized value. As a result, fuzzy-based Segment-Boost showed higher face recognition rate than compared boosting methods and it preserves the velocity of feature selection as fast as that of Segment-Boost. From the experimental results, it was proved that fuzzy-based Segment-Boost has improved and stable performances of learning, feature selection and face recognition.
In this paper, we propose an improved fuzzy RBF network which dynamically adjusts the rate of learning by applying the Delta-bar-Delta algorithm in order to improve the learning performance of fuzzy RBF networks. The proposed learning algorithm, which combines the fuzzy C-Means algorithm with the generalized delta learning method, improves its learning performance by dynamically adjusting the rate of learning. The adjustment of the learning rate is achieved by self-generating middle-layered nodes and by applying the Delta-bar-Delta algorithm to the generalized delta learning method for the learning of middle and output layers. To evaluate the learning performance of the proposed RBF network, we used 40 identifiers extracted from a container image as the training data. Our experimental results show that the proposed method consumes less training time and improves the convergence of teaming, compared to the conventional ART2-based RBF network and fuzzy RBF network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.