• 제목/요약/키워드: 퍼지학습

Search Result 602, Processing Time 0.034 seconds

Learning Memebership Functions of Fuzzy Rules for Classification (분류를 위한 퍼지 규칙의 소속함수 학습)

  • 장민경;곽동헌;류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.449-451
    • /
    • 2003
  • 패턴 분류 문제에서 수치적 속성일 경우 퍼지 적용은 효과적인 결과를 보인다는 것은 많은 연구를 통해 알려졌다. 하지만 퍼지를 적용한 패턴분류의 결과는 소속함수의 모양과 개수에 따라 크게 영향을 받는다는 문제점을 가지고 있다. 따라서 이러한 문제점은 퍼지를 쉽게 응용분야에 적용시키지 못하는 원인이 된다. 따라서 본 논문에서는 자동으로 소속함수를 정의할 수 있는 소속함수 학습 방법을 제안한다. 제안한 방법1)은 Penalty연산과 Reward연산을 통해 소속함수가 학습되고 Coverage연산을 통해 소속함수 개수가 학습된다. 제안된 방법의 가능성을 확인하기 위해 벤치마크 데이터 중 Iris, Appendicitis, Breast Cancer를 사용하여 기존 방법과 비교한다.

  • PDF

A Study on Auto-Tuning Method of learning Rate by Using Fuzzy Logic System (퍼지 논리 시스템을 이용한 학습률 자동 조정 방법에 관한 연구)

  • 주영호;김태영;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.484-489
    • /
    • 2003
  • 본 논문에서는 역전파 알고리즘의 성능 개선을 위해 퍼지 논리 시스템을 이용한 학습률 자동 조정 방법을 제안한다. 제안된 방법은 목표값과 출력값의 차이에 대한 절대값이 $\varepsilon$ 보다 적거나 같으면 정확성으로 분류하고 크면 부정확성으로 분류한다. 정확성의 총 개수를 퍼지 논리 시스템에 적용하여 학습률과 모멘텀을 동적으로 조정한다. 제안된 방법을 XOR 문제와 숫자패턴 문제에 적용하여 실험한 결과, 기존의 역전파 알고리즘, 모멘텀 방식, Jacob의 delta-bar-delta 방식보다 성능이 개선됨을 확인하였다.

  • PDF

Optimial Identification of Fuzzy-Neural Networks Structure (퍼지-뉴럴 네트워크 구조의 최적 동정)

  • 윤기찬;박춘성;안태천;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.99-102
    • /
    • 1998
  • 본 논문에서는 복잡하고 비선형적인 시스템의 최적 모델링을 우해서 지능형 퍼지-뉴럴네트워크의 최적 모델 구축을 위한 방법을 제안한다. 기본 모델은 퍼지 추론 시스템의 언어적인 규칙생성의 장점과 뉴럴 네트워크의 학습기능을 결합한 FNNs 모델을 사용한다. FNNs 모델의 퍼지 추론부는 간략추론이 사용되고, 학습은 요류 역전파 알고리즘을 사용하여 다른 모델들에 비해 학습속도가 빠르고 수렴능력이 우수하다. 그러나 기본 모델은 주어진 시스템에 대하여 퍼지 공간을 균등하게 분할하여 퍼지 소속을 정의한다. 이것은 비선형 시스템의 모델링에 있어어서 성능을 저하시켜 최적의 모델을 얻기가 어렵다. 논문에서는 주어진 데이터의 특성을 부여한 공간을 설정하기 위하여 클러스터링 알고리즘을 사용한다. 클러스터링 알고리즘은 주어진 시스템에 대하여 상호 연관성이 있는 데이터들끼리 특성을 나누어 몇 개의 클래스를 이룬다. 클러스터링 알고리즘을 사용하여 초기 FNNs 모델의 퍼지 공간을 나누고 소속함수를 정의한다. 또한, 최적화 기법중의 하나로 자연선택과 자연계의 유전자 메카니즘에 바탕을 둔 탐색 알고리즘인 유전자 알고리즘을 사용하여 주\ulcorner 진 모델에 대하여 최적화를 수행한다. 또한 본 연구에서는 학습 및 테스트 데이터의 성능 결과의 상호 균형을 얻기 위한 하중값을 가긴 성능지수가 제시된다.

  • PDF

A Design of the CMAC-based Fuzzy Logic Controller with an Accurate Approximation Ability (정확한 근사화 능력을 갖는 CMAC 신경망 기반 퍼지 제어기의 설계)

  • 김대진;이한별
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.289-295
    • /
    • 1998
  • 본 논문은 빠른 학습과 정확한 근사 능력을 갖는 새로운 CMAC 신경망 기반 퍼지 제어기르 제안한다. 제안한 CMAC 신경망 기반 퍼지 제어기(CBFLC)는 한 학습 주기 동안 전향 및 역전파 연산시 신경망내 유닛중 극히 일부분만이 활성화되어 학습에 참가하므로 학습 시간이 매우 빠르고, 비퍼지화 연산시 소속 함수의 중심값 뿐 아니라 폭을 동시에 고려하여 정확한 근사화를 얻는다. 제안한 퍼지 제어기내 입?출력 소속 함수의 중심값 및 폭 등의 구조적 파라메터들은 역전파 알고리즘에 의해 갱신된다. 제안한 CMAC 신경망 기반 퍼지 제어기를 트럭 후진 주차문제에 적용하여 근사화 능력 및 제어 성능면에서 여러 다른 퍼지 제어기들과 비교한다.

  • PDF

Fuzzy evaluation system for level-based Computational Thinking Skill Education (수준별 컴퓨팅 사고력 교육을 위한 퍼지평가 시스템)

  • Han, SeungEui
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.641-642
    • /
    • 2020
  • 최근 교육서비스 시장은 학습자의 수준을 고려한 수준별 교육으로 나아가고 있다. 이때 학습자 수준의 진단을 위하여 다양한 방법의 진단평가가 연구되고 있으며 평가 기준의 언어적 모호함을 해결하기 위해 퍼지 이론을 도입한 평가 방법 역시 하나의 방법으로 대두되고 있다. 본 논문에서는 컴퓨팅 사고력 교육 역시 수준별 교육으로 나아가기 위해 컴퓨팅 사고력 학습을 계층화 하고, 학습자가 학습 시작전 퍼지 추론을 바탕으로 한 진단 평가를 실시하여 학습자 수준에 맞는 교육 커리큘럼의 진입점을 찾아 맞춤형 컴퓨팅 교육을 제공할 수 있도록 하는 퍼지 평가 시스템을 연구·개발한다.

  • PDF

Improving the Performance of Fuzzy Classification Using Membership Function Learning (소속 함수 학습을 이용한 퍼지 분류의 성능 개선)

  • 곽동헌;류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.613-615
    • /
    • 2004
  • 수치적인 데이터를 분류하기 위한 대표적인 방법은 퍼지 규칙을 사용하는 것이다. 하지만 퍼지 규칙을 이용하는 방법은 퍼지 소속 함수를 어떻게 정의하느냐에 따라 퍼지 분류의 성능이 크게 영향을 받는다는 문제점이 있다. 따라서 퍼지 규칙을 쉽게 이해하기 위해서는 가능한 퍼지 규칙의 수를 적게 유지하는 것이 필요하다. 본 논문에서는 효과적이며 이해하기 쉬운 퍼지 규칙을 생성하기 위해 기울기 강하법을 기반으로 하는 소속 함수 학습 방법을 제안한다 에러율을 감소하기 위해 Penalty 연산과 Reward 연산을 통해 소속 함수가 반복적으로 조절된다 새로운 소속 함수는 Coverage 연산에 의해 생성된다. 또한 이해하기 쉬운 퍼지 규칙을 최적화하기 위해 학습된 소속 함수골 퍼지 결정 트리에 적용한다. 본 논문에서 제안한 알고리즘의 타당성을 확인하기 위해 벤치 마크 데이터인 Iris, Wisconsin Breast Cancer, Plma, Bupa 데이터를 이용하여 실험 결과를 보인다. 실험 결과를 통해 제안한 알고리즘이 기존의 C4.5와 FID 3.1 알고리즘보다 더 효과적이거나 비슷한 성능을 보임을 알 수 있다.

  • PDF

Fuzzy Inference System for the Synthesis Learning Evaluation (종합학습평가를 위한 퍼지추론 시스템)

  • Son, Chang-Sik;Kim, Jong-Uk;Jeong, Gu-Beom
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.742-746
    • /
    • 2006
  • Evaluation of learning ability of students is classified a step of diagnostic, formative and summative evaluation. This step-by-step evaluation is the standard of synthesis judgement, from a student's prior learning of preparation state to devotion of learning process and even learning result. In this paper, we propose the method of synthesis learning evaluation which is considered evaluation of each step in using fuzzy inference. In order to get objective evaluation of learning ability, we applied to the weights by evaluation steps. And we reflected defuzzification values of final evaluation membership function interval obtained by fuzzy inference about diagnostic, formative and summative evaluation. As a result, it processes definite inference ensures objectivity and shows validity of the synthesis evaluation method.

Container Recognition System using Fuzzy RBF Network (퍼지 RBF 네트워크를 이용한 컨테이너 인식 시스템)

  • Kim, Jae-Yong;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.497-503
    • /
    • 2005
  • 본 논문에서는 퍼지 RBF 네트워크를 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지 추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4방향 윤광선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 퍼지 C-Means 알고리즘을 이용한 퍼지 RBF 네트워크를 제안하여 개별 식별자에 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출방법이 개선되었다. 그리고 기존의 ART2 기반 RBF 네트워크보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 있어서 우수함을 확인하였다.

  • PDF

Fuzzy-based Segment-Boost Method for Effective Face Recognition (퍼지기반 Segment-Boost 방법을 통한 효과적인 얼굴인식)

  • Chang, Won-Suk;Noh, Chang-Hyeon;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • This paper suggests fuzzy-based Segment-Boost method and an effective method for face recognition using the fuzzy-based Segment-Boost. Fuzzy-based Segment-Boost eliminates the limitations of Segment-Boost, and it guarantees improved learning performance and the stability of the performance. By using the fuzzy theory, fuzzy-based Segment-Boost optimizes the selection number of sub-vectors, and leads the optimized learning performance. The fuzzy controller designed in this paper measures learning performance of the fuzzy-based Segment-Boost, and it controls the selection number of sub-vectors by inferring the optimized selection number. The simulation results show that the fuzzy controller inferred the selection number which is very approximate to the true optimized value. As a result, fuzzy-based Segment-Boost showed higher face recognition rate than compared boosting methods and it preserves the velocity of feature selection as fast as that of Segment-Boost. From the experimental results, it was proved that fuzzy-based Segment-Boost has improved and stable performances of learning, feature selection and face recognition.

Learning Performance Improvement of Fuzzy RBF Network (퍼지 RBF 네트워크의 학습 성능 개선)

  • Kim Kwang-Baek
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.369-376
    • /
    • 2006
  • In this paper, we propose an improved fuzzy RBF network which dynamically adjusts the rate of learning by applying the Delta-bar-Delta algorithm in order to improve the learning performance of fuzzy RBF networks. The proposed learning algorithm, which combines the fuzzy C-Means algorithm with the generalized delta learning method, improves its learning performance by dynamically adjusting the rate of learning. The adjustment of the learning rate is achieved by self-generating middle-layered nodes and by applying the Delta-bar-Delta algorithm to the generalized delta learning method for the learning of middle and output layers. To evaluate the learning performance of the proposed RBF network, we used 40 identifiers extracted from a container image as the training data. Our experimental results show that the proposed method consumes less training time and improves the convergence of teaming, compared to the conventional ART2-based RBF network and fuzzy RBF network.

  • PDF