• Title/Summary/Keyword: 퍼지컬러필터

Search Result 7, Processing Time 0.021 seconds

Color Image Filter Using Fuzzy Logic (퍼지 논리를 이용한 컬러 영상 필터)

  • Jeon, Hyun-Jin;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.305-307
    • /
    • 2009
  • 본 논문에서는 기존의 퍼지 논리를 이용한 필터링 알고리즘의 문제점을 개선하는 동시에 컬러 영상에 적용할 수 있는 퍼지 필터 알고리즘을 제안한다. 제시된 퍼지 필터 알고리즘은 영상의 RGB 컬러 정보를 각각의 R, G, B 채널 영상으로 분리하고, 각 채널 영상에서 마스크가 위치한 기준 픽셀의 잡음 가능성 정도를 퍼지 논리에 적용하여 판단한다. 잡음 정도에 따라서 출력 영상의 화소값을 평균값 또는 중간값으로 결정한다. 제안된 방법을 잡음이 존재하는 칼라 영상에 적용한 결과, 단색 정보를 기준으로 처리하는 기존의 퍼지 필터 방법에 비해서 효과적인 것을 확인하였다.

  • PDF

Image Filter using Fuzzy Method on Color Image (컬러 영상에서 퍼지 기법을 이용한 영상 필터)

  • Lee, Yeong-Uk;Song, Ha-Jun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.216-218
    • /
    • 2010
  • 본 논문에서는 기존의 퍼지 필터링 알고리즘의 문제점을 개선한 퍼지 필터링 기법을 제안한다. 제안된 퍼지 필터링 알고리즘은 컬러 영상에서 R, G, B 채널을 각각 분리한다. 분리된 각 채널에서 마스크 정보를 추출하여 채널에 대한 평균값과 중간값의 명암도를 제안된 퍼지 기법의 소속 함수에 적용하여 소속도를 구한 뒤, 추론 규칙에 적용한다. 그리고 R, G, B 각각의 소속도 값을 이용하여 잡음 가능성 여부를 판별한다. 제안된 퍼지 기법에서 소속 함수 구간은 세 개 구간으로 설정하였다. 잡음이라고 판단되는 경우에는 그 잡음 정도에 따라 중간값이나 평균값을 해당 픽셀 값으로 설정하여 잡음을 제거한다. 제안된 기법을 컬러 영상에 적용한 결과, 제안된 기법이 기존의 퍼지 필터링 기법보다 잡음 제거에 있어서 효과적인 것을 확인할 수 있었다.

  • PDF

Color Image Filter Using Fuzzy Logic (퍼지 논리를 이용한 컬러 영상 필터)

  • Ko, Chang-Ryong;Koo, Kyung-Wan;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.43-48
    • /
    • 2011
  • Among various methods proposed earlier, fuzzy image filtering is usually one of the favored techniques because it has less blurring effect and the decrease of noise removal rate after filtering. However, fuzzy filtering is ineffective on color images since it is firstly developed with gray scale. Thus, in this paper, we propose a fuzzy filtering algorithm for color images. First, we divide RGB color information from image into three channels of R, G, and B and judge the possibility of each pixel with mask by fuzzy logic independently. The output pixel value might be the average or median according to the degree of noise. Our experiment successfully verifies the effectiveness of new algorithm in color image.

Color Image Filter using an Enhanced Fuzzy Method (개선된 퍼지 기법을 이용한 컬러 영상 필터)

  • Kim, Kwang Baek;Lee, Byung Kwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.27-32
    • /
    • 2012
  • In this paper, we propose a fuzzy method that improves the existing problem of the fuzzy filtering algorithm. The proposed fuzzy filtering algorithm separates R, G, and B channels from the color image. Mask information was extracted from separated channels and the brightness of the mean value and median value for channels was applied in the function of the proposed fuzzy method to calculate the membership and achieve application in the inference rule. Also, the membership degrees of R, G, and B were used to distinguish the possibility of noise. The proposed fuzzy method selected three membership functions. If noise is distinguished, the noise is eliminated by selecting the median value or mean value as the relevant pixel value according to the degree of noise. By applying the proposed method in color images, it was verified that the proposed method is more effective in eliminating noise when compared with the conventional fuzzy filtering method.

Fuzzy Threshold Inference of a Nonlinear Filter for Color Sketch Feature Extraction (컬러 스케치특징 추출을 위한 비선형 필터의 퍼지임계치 추론)

  • Cho Sung-Mok;Cho Ok-Lae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.398-403
    • /
    • 2006
  • In this paper, we describe a fuzzy threshold selection technique for feature extraction in digital color images. this is achieved by the formulation a fuzzy inference system that evaluates threshold for feature configurations. The system uses two fuzzy measures. They capture desirable characteristics of features such as dependency of local intensity and continuity in an image. We give a graphical description of a nonlinear sketch feature extraction filter and design the fuzzy inference system in terms of the characteristics of the feature. Through the design, we provide selection method on the choice of a threshold to achieve certain characteristics of the extracted features. Experimental results show the usefulness of our fuzzy threshold inference approach which is able to extract features without human intervention.

  • PDF

Performance Evaluations of the Interpolation Methods Under the various illumination intensities and its Application to the Adaptive Interpolation for Image Sensors (이미지센서를 위한 조도에 따른 보간 기법의 성능 평가와 이를 이용한 가변적 보간 기법)

  • Kim, Byung-Su;Paik, Doo-Won
    • Journal of Internet Computing and Services
    • /
    • v.9 no.1
    • /
    • pp.171-177
    • /
    • 2008
  • In this paper we compared the performance of interpolation algorithms for Bayer patterned image sensors under the various illumination intensities. As the interpolation algorithms, we used bilinear color interpolation and adaptive fuzzy color interpolation and our experimentation shows that performance of interpolation algorithms depend on the lighting conditions; in low intensity of illumination, bilinear color interpolation with median filter performs best, in high intensity of illumination, adaptive fuzzy color interpolation performs best, and in between bilinear color interpolation performs best. This study suggested an interpolation scheme which applies different interpolation algorithm according to the intensity of the input image, resuting in the better image quality.

  • PDF

Video-based Intelligent Unmanned Fire Surveillance System (영상기반 지능형 무인 화재감시 시스템)

  • Jeon, Hyoung-Seok;Yeom, Dong-Hae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.516-521
    • /
    • 2010
  • In this paper, we propose a video-based intelligent unmanned fire surveillance system using fuzzy color models. In general, to detect heat or smoke, a separate device is required for a fire surveillance system, this system, however, can be implemented by using widely used CCTV, which does not need separate devices and extra cost. The systems called video-based fire surveillance systems use mainly a method extracting smoke or flame from an input image only. The smoke is difficult to extract at night because of its gray-scale color, and the flame color depends on the temperature, the inflammable, the size of flame, etc, which makes it hard to extract the flame region from the input image. This paper deals with a intelligent fire surveillance system which is robust against the variation of the flame color, especially at night. The proposed system extracts the moving object from the input image, makes a decision whether the object is the flame or not by means of the color obtained by fuzzy color model and the shape obtained by histogram, and issues a fire alarm when the flame is spread. Finally, we verify the efficiency of the proposed system through the experiment of the controlled real fire.