• Title/Summary/Keyword: 퍼지추출기법

Search Result 185, Processing Time 0.029 seconds

Inserting Chaff Points into Fuzzy Fingerprint Vault for Protecting Correlation Attack (지문 퍼지볼트의 상관공격에 강인한 거짓 특징점 삽입 방법)

  • Choi, Hanna;Lee, Sungju;Chung, Yongwha;Choi, Woo-yong;Moon, Daesung;Moon, Kiyoung
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.645-646
    • /
    • 2009
  • 지문 템플릿(Fingerprint Template)을 보호하기 위해 암호학적 기법인 퍼지볼트(Fuzzy Vault)가 적용되었다. 퍼지볼트 기법은 지문으로 부터 추출되는 특징점을 은닉하기 위하여 지문 템플릿에 다수의 거짓 특징점을 "임의"로 삽입하는 방법이다. 그러나 최근 이러한 지문 퍼지볼트를 효과적으로 크래킹 할 수 있는 상관공격(Correlation Attack)에 관한 연구가 발표되었는데, 이것은 동일한 지문으로 부터 생성되는 두 개의 지문 템플릿을 획득함으로써 진짜와 거짓 특징점을 쉽게 구별하는 방법이다. 본 논문에서는 상관공격에 강인도록 지문 퍼지볼트를 생성하는 방법을 제안한다. 제안한 방법은 특징점의 각도 정보를 이용하여 거짓선분(Chaff Line)을 생성한 후 "규칙적"으로 거짓특징점을 삽입함으로써, 두 개 지문 템플릿을 획득하더라도 동일한 지문에 대해 삽입된 거짓 특징점의 위치와 각도가 유사하기 때문에 진짜와 거짓 특징점을 구별하기 어려워 상관공격을 피할 수 있다. 실험을 통하여 거짓 특징점을 규칙적으로 저장하는 방법을 적용함으로써 기존 방법의 인식 성능을 유지하면서, 상관 공격에 강인함을 확인하였다.

A Crack Detection of Lens using Adaptive Binarization (적응적 이진화를 이용한 렌즈의 흠집 검출)

  • Ahn, Ha-jun;Park, Jae-woo;Kim, Kwang Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.517-519
    • /
    • 2016
  • 본 논문에서는 적응적 이진화 기법을 적용하여 흠집 영역을 검출한다. 제안된 방법은 안경 렌즈 영상에서 명암 대비를 적용하여 렌즈의 명암을 강조한다. 명암이 강조된 영상에서 렌즈 밖의 배경 영역은 흠집 검출에 불필요하므로 개선된 평균 이진화 기법을 적용한 후에 렌즈의 윤곽선을 검출하여 렌즈 이외의 배경을 제거한다. 렌즈 이외의 배경이 제거된 렌즈 영상에서 렌즈 내부에 명암대비를 적용하여 렌즈 내부의 배경과 흠집의 명암을 강조한다. 명암이 강조된 렌즈 내부 영역에서 적응적 이진화 기법을 적용하여 흠집과 잡음을 검출한다. 잡음은 중간값 필터를 적용하여 제거한 후에 흠집 영역을 추출한다. 추출된 흠집 영역을 렌즈의 중심으로부터의 거리와 흠집의 크기를 퍼지 추론 규칙을 적용하여 눈에 미치는 영향 정도를 분석한다. 본 논문에서 제안된 방법의 성능을 분석하기 위해 CHEMI, MID, HL, HM과 같은 시력 보정용 렌즈 영상 6장을 대상으로 실험한 결과, 제안된 방법이 기존 렌즈 흠집 추출 방법보다 흠집 영역이 정확하게 추출되었고 눈에 미치는 영향을 효과적으로 분석할 수 있는 가능성을 확인하였다.

  • PDF

Fuzzy Inference of Large Volumes in Parallel Computing Environments (병렬컴퓨팅 환경에서의 대용량 퍼지 추론)

  • 김진일;이상구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.293-298
    • /
    • 2000
  • In fuzzy expert systems or database systems that have volumes of fuzzy data or large fuzzy rules, the inference time is much increased. Therefore, a high performance parallel fuzzy computing environment is needed. In this paper, we propose a parallel fuzzy inference mechanism in parallel computing environments. In this, fuzzy rules are distributed and executed simultaneously. The ONE_TO_ALL algorithm is used to broadcast the fuzzy input input vector to the all nodes. The results of the MIN/MAX operations are transferred to the output processor by the ALL_TO_ONE algorithm. By parallel processing of fuzzy or data, the parallel fuzzy inference algortihm extracts effective and achieves and achieves a good speed factor.

  • PDF

Development of Quality Information Control Technique using Fuzzy Theory (퍼지이론을 이용한 품질 정보 관리기법 개발에 관한 연구)

  • 김경환;하성도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.524-528
    • /
    • 1996
  • Quality information is known to have the characteristic of continuous distribution in many manufacturing processes. It is difficult to describe the process condition by classifying the distribution into discrete ranges which is based on the set concept. Fuzzy control chart has been developed for the control of linguistic data but it still utilizes the dichotomous notion of classical set theory. In this paper, the fuzzy sampling method is studied in order to manage the ambiguous data properly and incorporated for generating fuzzy control chart. The method is based on the fuzzy set concept and considered to be appropriate for the realization of a complete fuzzy control chart. The fuzzy control chart was compared with the conventional generalized p-chart in the sensitivity for quality distribution and robustiness against the noise. The fuzzy control chart with the fuzzy sampling method showed better characteristics.

  • PDF

Minimum Fuzzy Membership Function Extraction for Automatic Fall Detection (노인낙상 검출을 위한 최소 퍼지소속함수의 추출)

  • Jung K. Uhm;Hyoung J. Jang;Joon S. Lim
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.13-16
    • /
    • 2008
  • 본 논문은 가중퍼지소속함수 기반신경망(neural network with weighted fuzzy membership functions, NEWFM)기반의 자동 특징 추출기법을 사용하여 인체의 세 방향에서 발생하는 가속도 값으로부터 낙상을 탐지하는 방안을 제시하고 있다. 10명의 피검자로부터 8가지 시나리오로 낙상/비낙상 데이터 800개를 수집하고 웨이블릿 변환(wavelet transform, WT)을 통해 추출한 계수중 비중복면적 분산법에 의해 중요도가 가장 낮은 특징입력을 하나씩 제거하면서 최소의 특징 입력을 선택하였다. 특징입력으로는 가속도 값을 웨이블릿 변환한 11개의 d4계수들 중 비중복면적 분산법에 의해서 중요도가 가장 높은 5개의 계수가 사용되었고, 이들 특징입력을 통해 93%의 전체 분류율을 나타내었다.

Insect Footprint Recognition using Trace Transform and a Fuzzy Method (Trace 변환과 펴지 기법을 이용한 곤충 발자국 인식)

  • Shin, Bok-Suk;Cha, Eui-Young;Woo, Young-Woon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1615-1623
    • /
    • 2008
  • This paper proposes methods to classify scanned insect footprints. We propose improved SOM and ART2 algorithms for extracting segments, basic areas for feature extraction, and utilize Trace transform and fuzzy weighted mean methods for extracting feature values for classification of the footprints. In the proposed method, regions are extracted by a morphological method in the beginning, and then improved SOM and ART2 algorithms are utilized to extract segments regardless of kinds of insects. Next, A Trace transform method is used to find feature values suitable for various kinds of deformation of insect footprints. In the Trace transform method, Triple features from reconstructed combination of diverse functions, are used to classify the footprints. In general, it is very difficult to decide automatically whether the extracted footprint segment is meaningful for classification or not. So we use a fuzzy weighted mean method for not excluding uncertain footprint segments because the uncertain footprint segments may be possible candidates for classification. We present experimental results of footprint segment extraction and segment classification by the proposed methods.

  • PDF

Character Extraction Using Wavelet Transform and Fuzzy Clustering (웨이브렛 변환과 퍼지 군집화를 활용한 문자추출)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.93-100
    • /
    • 2007
  • In this paper, a novel approach based on wavelet transform is proposed to process the scraped character which is represented on digital image. The basis idea is that the scraped character is described by its textured neighborhood, and it is decomposed into multiresolution features at different levels with its background region. The image is first decomposed into sub bands by applying Daubechies wavelets. Character features are extracted from the low frequency sub-bands by partition, FCM clustering and area-based region process. High frequency ones are activated by applying local energy density over a moving mask. Features are synthesized in order to reconstruct the original image state through inverse wavelet transform Background region is eliminated and character is extracted. The experimental results demonstrate the effectiveness of the proposed method.

Caricaturing using Local Warping and Edge Detection (로컬 와핑 및 윤곽선 추출을 이용한 캐리커처 제작)

  • Choi, Sung-Jin;Kim, Sung-Sin;Bae, Hyun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.137-140
    • /
    • 2003
  • 캐리커처의 일반적인 의미는 어떤 사람이나 사물의 특징을 추출하여 익살스럽게 풍자한 그림이나 글이다. 다시 말해, 캐리커처는 사람의 얼굴에서 특징을 잡아 과장하거나 왜곡하여 그린 데생이라고 한다. 컴퓨터를 이용한 기존의 캐리커처 제작방법으로는, 입력 이미지 좌표의 통계적인 차이값을 이용하는 PICASSO System 방법[1], 제작자의 애매한 느낌을 퍼지 논리를 이용하여 표현하는 방법, 이미지를 와핑하는 방법, 여러 단계의 벡터 필드 변환을 이용하는 방법등이 연구되어 왔다. 본 논문에서는 실시간 또는 준비된 영상을 입력으로 받아 저장한 후, 네 단계의 과정으로 처리한 후 최종적으로 캐리커처된 이미지를 생성하게 된다. 각 단계별 처리 내용으로는 첫번째 단계에서는 영상에서 얼굴을 검출하고 두번째 단계에서는 특정 얼굴부위의 기하학적 정보를 좌표값으로 추출한다. 세번째 단계에서는 전 단계에서 얻은 좌표값으로 로컬 와핑 기법을 이용하여 영상을 변환한다. 네 번째 단계에서는 변형된 영상으로 퍼지 논리를 이용하여 보다 개선된 윤곽선 이미지로 변환하여 캐리커처 이미지를 얻는다. 본 논문에서는 영상 인식, 변환 및 윤곽선 검출 및 둥의 여러 가지 영상 처리 기법을 이용하여 기존의 캐리커처 제작 방식보다 간단하고, 복잡한 연산 과정이 없는 캐리커처 제작 시스템을 구현하였다.

  • PDF

A Study on Off-Line Signature Verification using Directional Density Function and Weighted Fuzzy Classifier (가중치 퍼지분류기와 방향성 밀도함수를 이용한 오프라인 서명 검증에 관한 연구)

  • 한수환;이종극
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.6
    • /
    • pp.592-603
    • /
    • 2000
  • This paper is concerning off-line signature verification using a density function which is obtained by convolving the signature image with twelve-directional $5\times{5}$ gradient masks and the weighted fuzzy mean classifier. The twelve-directional density function based on Nevatia-Babu template gradient is related to the overall shape of a signature image and thus, utilized as a feature set. The weighted fuzzy mean classifier with the reference feature vectors extracted from only genuine signature samples is evaluated for the verification of freehand forgeries. The experimental results show that the proposed system can classify a signature whether it is genuine or forged with more than 98% overall accuracy even without any knowledge of varied freehand forgeries.

  • PDF

Face Recognition using Eigenfaces and Fuzzy Neural Networks (고유 얼굴과 퍼지 신경망을 이용한 얼굴 인식 기법)

  • 김재협;문영식
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • Detection and recognition of human faces in images can be considered as an important aspect for applications that involve interaction between human and computer. In this paper, we propose a face recognition method using eigenfaces and fuzzy neural networks. The Principal Components Analysis (PCA) is one of the most successful technique that have been used to recognize faces in images. In this technique the eigenvectors (eigenfaces) and eigenvalues of an image is extracted from a covariance matrix which is constructed form image database. Face recognition is Performed by projecting an unknown image into the subspace spanned by the eigenfaces and by comparing its position in the face space with the positions of known indivisuals. Based on this technique, we propose a new algorithm for face recognition consisting of 5 steps including preprocessing, eigenfaces generation, design of fuzzy membership function, training of neural network, and recognition. First, each face image in the face database is preprocessed and eigenfaces are created. Fuzzy membership degrees are assigned to 135 eigenface weights, and these membership degrees are then inputted to a neural network to be trained. After training, the output value of the neural network is intupreted as the degree of face closeness to each face in the training database.