• Title/Summary/Keyword: 퍼지추출기법

Search Result 185, Processing Time 0.028 seconds

Intelligent Maneuvering Target Tracking Based on Noise Separation (잡음 구분에 의한 지능형 기동표적 추적기법)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.469-474
    • /
    • 2011
  • This paper presents the intelligent tracking method for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. K-means clustering and TS fuzzy system are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by K-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. While calculating expected value, the non-linearity of the maneuvering target is recognized as linear one by dividing acceleration and the capability of Kalman filter is kept in the filtering process. The error for the non-linearity is compensated by approximated acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.

Effective Recognition of Land Registration Map Using Fuzzy Inference (퍼지추론 기반의 효율적인 지적도면 인식)

  • Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.3
    • /
    • pp.343-349
    • /
    • 2007
  • This paper addressed a recognition method of land registration map based on fuzzy inference scheme, which is able to solve the time complexity problem of typical method [Fig. 2]. Not only line color, thickness but also number, character are used as a fuzzy input parameter. It concentrated on generation of fuzzy association map, and useful informations are extracted result from fuzzy inference. These results are precedent process for estimating the construction space and restoring 3D automatic modeling. It can also utilize to the internet service acceleration propulsion business such as u-Gov based land registration service.

  • PDF

Development of Emotion-Based Human Interaction Method for Intelligent Robot (지능형 로봇을 위한 감성 기반 휴먼 인터액션 기법 개발)

  • Joo, Young-Hoon;So, Jea-Yun;Sim, Kee-Bo;Song, Min-Kook;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.587-593
    • /
    • 2006
  • This paper is to present gesture analysis for human-robot interaction. Understanding human emotions through gesture is one of the necessary skills for the computers to interact intelligently with their human counterparts. Gesture analysis is consisted of several processes such as detecting of hand, extracting feature, and recognizing emotions. For efficient operation we used recognizing a gesture with HMM(Hidden Markov Model). We constructed a large gesture database, with which we verified our method. As a result, our method is successfully included and operated in a mobile system.

Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target (FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • This paper presents the intelligent tracking algorithm for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. Fuzzy c-mean clustering and predicted impact point are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by fuzzy c-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. The filtering process in a series of the algorithm which estimates the target value recognize the nonlinear maneuvering target as linear one because the filter recognize only remained noise by extracting acceleration from the positional error. After filtering process, we get the estimates target by compensating extracted acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. To maximize the effectiveness of the proposed system, we construct the multiple model structure. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.

A Study on Tracking based on Intelligent Method (지능기법을 이용한 물체추적에 관한 연구)

  • Lee, Min-Jung;Jin, Tae-Seok;Park, Jin-Hyun;Hwang, Gi-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.239-241
    • /
    • 2007
  • 최근에 지능형 로봇분야에서 주위 카메라를 기반으로 실시간으로 환경인식 및 물체 추적 등 다양한 분야에서 연구가 활발히 진행되고 있다. 환경인식 및 물체 추적은 결국 배경과 관심물체를 분리하는 것이라고 볼 수 있는 데, 차 연산을 이용하여 물체의 움직임만을 배경으로 분리하는 방법과 물체인식을 통해 배경으로부터 분리하여 추적하는 방법에 대한 연구가 지속적으로 이루어지고 있다. 본 논문에서는 배경과 물체 사이에서 변화하는 색상의 변화를 퍼지기법을 이용하여 물체를 배경과 분리하여 실시간으로 물체를 추적하고자 한다. 실시간 물체 추적을 위해 전체영상에 대한 전역적 탐색을 통해 여러 후보 물체 중 관심물체를 배경에서 추출 후, 추출된 물체의 크기에 따른 지역탐색을 통하여 물체를 추적하는 방법이다. 그리고 본 논문에서는 ARM프로세서를 이용한 카메라시스템을 제작하여 실시간으로 영상분활을 실험하였다.

  • PDF

Sign Language Recognition using a Modified Fuzzy Min-Max Neural Network Model (수정된 퍼지 최대-최소 신경망 모델을 이용한 수화 인식 기법)

  • Park, So-Jeong;Kim, Ho-Joon
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.257-260
    • /
    • 2011
  • 본 논문에서는 수화인식을 위한 신경망에서 특징추출과 분류단계의 방법론과, 특징 선별 기법을 통하여 분류기의 규모를 최적화 하는 방법을 고찰한다. 색상 및 움직임정보로부터 특징영역의 시간에 따른 변화를 3 차원 볼륨형태의 데이터로 표현하며, 이로부터 특징지도를 생성하는 과정에서 특징영역의 위치에 대한 변이를 보완하는 방법을 고려한다. 특징추출과정과 패턴 분류과정에서 점진적 학습이 가능한 모델과 특징 수를 효과적으로 줄일 수 있는 방법론을 제시하였으며, 학습된 신경망으로부터 특징과 패턴 클래스간의 상대적 연관성 척도를 정의하여 특징을 선별하도록 하였다. 제안된 내용에 대하여 여섯 가지 수화패턴에 대상으로 한 실험을 통하여 그 유용성을 평가하였다.

Forecasting Short-Term KOSPI using Wavelet Transforms and Fuzzy Neural Network (웨이블릿 변환과 퍼지 신경망을 이용한 단기 KOSPI 예측)

  • Shin, Dong-Kun;Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.1-7
    • /
    • 2011
  • The methodology of KOSPI forecast has been considered as one of the most difficult problem to develop accurately since short-term KOSPI is correlated with various factors including politics and economics. In this paper, we presents a methodology for forecasting short-term trends of stock price for five days using the feature selection method based on a neural network with weighted fuzzy membership functions (NEWFM). The distributed non-overlap area measurement method selects the minimized number of input features by removing the worst input features one by one. A technical indicator are selected for preprocessing KOSPI data in the first step. In the second step, thirty-nine numbers of input features are produced by wavelet transforms. Twelve numbers of input features are selected as the minimized numbers of input features from thirty-nine numbers of input features using the non-overlap area distribution measurement method. The proposed method shows that sensitivity, specificity, and accuracy rates are 72.79%, 74.76%, and 73.84%, respectively.

Audio Segmentation and Classification Using Support Vector Machine and Fuzzy C-Means Clustering Techniques (서포트 벡터 머신과 퍼지 클러스터링 기법을 이용한 오디오 분할 및 분류)

  • Nguyen, Ngoc;Kang, Myeong-Su;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.19-26
    • /
    • 2012
  • The rapid increase of information imposes new demands of content management. The purpose of automatic audio segmentation and classification is to meet the rising need for efficient content management. With this reason, this paper proposes a high-accuracy algorithm that segments audio signals and classifies them into different classes such as speech, music, silence, and environment sounds. The proposed algorithm utilizes support vector machine (SVM) to detect audio-cuts, which are boundaries between different kinds of sounds using the parameter sequence. We then extract feature vectors that are composed of statistical data and they are used as an input of fuzzy c-means (FCM) classifier to partition audio-segments into different classes. To evaluate segmentation and classification performance of the proposed SVM-FCM based algorithm, we consider precision and recall rates for segmentation and classification accuracy for classification. Furthermore, we compare the proposed algorithm with other methods including binary and FCM classifiers in terms of segmentation performance. Experimental results show that the proposed algorithm outperforms other methods in both precision and recall rates.

A Rule Extraction Method Using Relevance Factor for FMM Neural Networks (FMM 신경망에서 연관도요소를 이용한 규칙 추출 기법)

  • Lee, Seung-Kang;Lee, Jae-Hyuk;Kim, Ho-Joon
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.377-380
    • /
    • 2012
  • 본 연구에서는 학습데이터의 빈도요소를 반영하도록 수정된 구조의 FMM 신경망을 소개하고, 이로부터 패턴 분류를 위한 지식 표현을 생성하는 방법론을 제안한다. 하이퍼박스 멤버쉽함수는 5종류의 퍼지 분할을 기반으로 설정한 구간에 대하여 소속정도를 반영하여 결정하며, 각 차원별로 특징범위의 폭과 빈도 요소로부터 가중치 값이 학습된다. 본 연구에서는 제안된 이론을 수화인식 문제를 대상으로 고찰하였다. 인식 시스템의 구성은 특징추출을 위하여 3차원으로 확장된 구조의 CNN 모델을 사용하였으며, 수화패턴 데이터의 표현은 모션 히스토리 볼륨(Motion History Volume) 구조를 기반으로 하였다. 6종류의 수화패턴 동영상으로부터 27개 특징요소를 추출하고 이를 사용한 FMM 신경망의 학습과정과 지식의 추출 과정을 실험으로 보이고 그 유용성을 고찰한다.

Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method (CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we introduce robust face recognition system with illumination variation realized with the aid of CT preprocessing method. As preprocessing algorithm, Census Transform(CT) algorithm is used to extract locally facial features under unilluminated condition. The dimension reduction of the preprocessed data is carried out by using $(2D)^2$PCA which is the extended type of PCA. Feature data extracted through dimension algorithm is used as the inputs of proposed radial basis function neural networks. The hidden layer of the radial basis function neural networks(RBFNN) is built up by fuzzy c-means(FCM) clustering algorithm and the connection weights of the networks are described as the coefficients of linear polynomial function. The essential design parameters (including the number of inputs and fuzzification coefficient) of the proposed networks are optimized by means of artificial bee colony(ABC) algorithm. This study is experimented with both Yale Face database B and CMU PIE database to evaluate the performance of the proposed system.