• 제목/요약/키워드: 퍼지추론시스템

검색결과 574건 처리시간 0.034초

사용자 프로파일에 기초한 유즈넷 뉴스그룹 자동 결정 방법 (Automatic Determination of Usenet News Groups from User Profile)

  • 김종완;조규철;김희재;김병만
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.142-149
    • /
    • 2004
  • 많은 양의 유즈넷 뉴스 중에서 사용자가 찾고자 하는 정확한 정보를 빠른 시간 안에 검색하고, 원하는 정보만 필터링 하는 것은 중요하다. 그러나 뉴스 문서는 이메일과 달라서 미리 자신에게 맞는 뉴스그룹을 등록해 주어야만 정보를 얻을 수 있다. 하지만, 초보자인 경우는 어떤 뉴스그룹이 자신의 관심사와 관련이 있는지를 판단하기가 용이치 않다. 따라서, 본 연구에서는 다양한 뉴스그룹들 중에서 사용자의 취향과 유사한 뉴스그룹들을 코호넨 신경망을 이용하여 추천해주는 방법을 제공한다. 신경망을 학습시키기 위한 뉴스 문서의 키워드들을 선택하기 위해 예제 문서들로부터 후보 용어들을 추출하고 퍼지 추론을 적용하여 대표 용어들을 선택한다. 하지만 신경망의 학습패턴을 관찰해 보면, 많은 부분이 비어있는 희소성 문제를 발견할 수 있다. 이에 본 연구에서는 통계적인 결정계수를 도입하여 불필요한 차원을 제거한 후 신경망을 학습시키는 새로운 방법을 제안한다. 제안된 방법은 모든 차원을 활용할 때 보다 클러스터내 거리와 클러스터간 거리의 척도를 이용한 클러스터 중첩도 면에서 우수한 분류 성능을 보여줌을 확인하였다.

인터넷 기반 스마트 화초 관리 시스템 (Smart Plants Management System based on Internet)

  • 박현숙;박천관;홍유식
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권5호
    • /
    • pp.193-199
    • /
    • 2015
  • 요즈음, 온도 및 습도, 조도 센서를 이용하여서, 식물 재배 환경 정보를 자동으로 수집하고 생장환경을 관리하는 지능형 온실 시스템이 많이 연구되고 있다. 본 논문에서는 조도, 온도 및 습도를 예측해서 인터넷 기반에서, 식물 재배의 최적 환경 조건을 추론하는 모의실험을 하였다. IOT 환경에서, 식물 재배 조건을 온도, 습도, 조도를 아두이노 센서에 실시간으로 온실 관리자에게 전송해서, 식물 재배에 필요한 최적의 온도, 습도 조건 값보다 크거나 적으면 자동으로 SMS 경고 문자를 실시간으로 전송해 주기 때문에, 급격한 기후 변화 (눈,비, 폭염)조건일 경우라도 최적의 화초 재배조건을 관리 할 수 있다. 본 논문에서는 퍼지논리와 WEKA TOOL을 이용하여서, 같은 온대 식물이라도, 그 지역에 필요한 최적의 온도, 습도, 조도(일사량) 수치를 산출하는 모의실험을 하였다.

데이터 정보입자 기반 퍼지 추론 시스템의 최적화 (Optimization of Fuzzy Inference Systems Based on Data Information Granulation)

  • 오성권;박건준;이동윤
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권6호
    • /
    • pp.415-424
    • /
    • 2004
  • In this paper, we introduce and investigate a new category of rule-based fuzzy inference system based on Information Granulation(IG). The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of “If..., then...” statements, and exploits the theory of system optimization and fuzzy implication rules. The form of the fuzzy rules comes with three types of fuzzy inferences: a simplified one that involves conclusions that are fixed numeric values, a linear one where the conclusion part is viewed as a linear function of inputs, and a regression polynomial one as the extended type of the linear one. By the nature of the rule-based fuzzy systems, these fuzzy models are geared toward capturing relationships between information granules. The form of the information granules themselves becomes an important design features of the fuzzy model. Information granulation with the aid of HCM(Hard C-Means) clustering algorithm hell)s determine the initial parameters of rule-based fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial function being used in the Premise and consequence Part of the fuzzy rules. And then the initial Parameters are tuned (adjusted) effectively with the aid of the improved complex method(ICM) and the standard least square method(LSM). In the sequel, the ICM and LSM lead to fine-tuning of the parameters of premise membership functions and consequent polynomial functions in the rules of fuzzy model. An aggregate objective function with a weighting factor is proposed in order to achieve a balance between performance of the fuzzy model. Numerical examples are included to evaluate the performance of the proposed model. They are also contrasted with the performance of the fuzzy models existing in the literature.

Battery State-of-Charge Estimation Using ANN and ANFIS for Photovoltaic System

  • Cho, Tae-Hyun;Hwang, Hye-Rin;Lee, Jong-Hyun;Lee, In-Soo
    • 한국정보기술학회논문지
    • /
    • 제18권5호
    • /
    • pp.55-64
    • /
    • 2020
  • 태양광 시스템의 안정성과 신뢰성 향상을 위해서는 배터리의 잔존량 (State of Charge, SOC)을 정확하게 추정하여야 한다. 본 연구에서는 gradient descent, Levenberg-Marquardt 및 scaled conjugate gradient 학습방법을 사용한 인공 신경회로망 (Artificial Neural Networks, ANN)과 적응형 뉴로-퍼지 추론 시스템 (Adaptive Neuro-Fuzzy Inference System, ANFIS)을 사용한 SOC 추정방법을 제안한다. 입력으로는 충전 시작 전압 및 적류적산법을 통해 구한 충전 전류를 사용하여 추정된 SOC를 출력한다. 4개의 모델 (ANN-GD, ANN-LM, ANN-SCG, 및 ANFIS)을 사용하여 SOC 추정 방법을 구현하였고 실험을 통해 MATLAB을 사용하여 4개의 모델의 성능을 비교 분석하였다. 실험 결과로부터 ANFIS 모델을 사용한 배터리의 SOC 추정이 가장 정확도가 높았으며 빠른 속도로 수렴함을 확인하였다.

Fuzzy-AHP와 Word2Vec 학습 기법을 이용한 영화 추천 시스템 (A Movie Recommendation System based on Fuzzy-AHP and Word2vec)

  • 오재택;이상용
    • 디지털융복합연구
    • /
    • 제18권1호
    • /
    • pp.301-307
    • /
    • 2020
  • 최근 추천 시스템은 5G 시대의 시작과 동시에 여러 분야에서 도입하고 있으며, 주로 도서나 영화, 음악 분야의 서비스에서 크게 두각을 나타내고 있다. 그러나 이러한 추천 시스템에서 사용자마다 선호하는 정도가 주관적이고, 불확실하여 정확한 추천 서비스를 제공하기가 어렵다. 추천 시스템의 성능을 향상시키기 위해서는 많은 양의 학습 데이터가 필요하며, 추론 기술이 보다 정확해야 한다. 이러한 문제점을 해결하기 위하여 본 연구에서는 Fuzzy-AHP와 Word2Vec 학습 기법을 이용한 영화 추천 시스템을 제안하였다. 본 시스템에서는 사용자의 선호도를 객관적으로 예측하기 위해 Fuzzy-AHP를 사용하였으며, 스크레이핑한 데이터를 분류하기 위해 Word2Vec 학습 기법을 사용하였다. 본 시스템의 성능을 평가하기 위해 그리드 서치를 이용하여 Word2Vec 학습 결과의 정확도를 측정하였고, 그 후 본 시스템이 예측한 평점과 관객들이 평가한 영화의 평점 간 차이를 비교하였다. 그 결과 최적의 교차 검증 정확도가 91.4%로 우수한 성능을 나타내었으며, 예측한 평점과 관객들이 평가한 영화의 평점 간 차이를 Fuzzy-AHP 시스템과 비교한 결과 10% 정도 우수함을 확인할 수 있었다.

이동 통신 시스템에서 사용자 이동성의 학습과 예측에 의한 이동성 데이타베이스의 실채 회복 (Failure Restoration of Mobility Databases by Learning and Prediction of User Mobility in Mobile Communication System)

  • 길준민;황종선;정영식
    • 한국정보과학회논문지:정보통신
    • /
    • 제29권4호
    • /
    • pp.412-427
    • /
    • 2002
  • 본 논문에서는 이동 통신 시스템 내에 존재하는 이동성 데이타베이스의 실패 처리를 위한 이동성 학습과 예측에 기반한 회복 기법을 제안한다. 이동 통신 시스템에서 이동성 데이타베이스는 사용자들에게 빠른 연결을 제공하기 위해 사용자의 현재 위치 정보를 유지해야 한다 그러나, 이동성 데이터베이스의 실패는 사용자의 위치 정보를 잃어버리게 만든다. 결과적으로, 명백한 회복 과정 없이는 실패 상황에서 사용자의 호 요청은 거절된다. 따라서, 이동성 데이타베이스에 실패가 발생하였을 때, 실패에 효과적으로 대처할 수 있는 명백한 회복 기법이 사용자들에게 연속적인 서비스 가용성을 보장해 주기 위해서 필요하다. 본 논문의 회복 기법에서 사용되는 이동성 학습과 예측은 이동성 데이타베이스의 실패 후 시스템에 의해서 사용자의 위치를 파악하기 위한 기능을 담당한다. 실패 없는 연산 동안 사용자의 이동 패턴은 뉴로-퍼지 추론 시스템에 의해서 학습되며, 학습된 위치 정보는 실패 후 잃어버린 사용자의 위치를 파악하기 위해서 사용된다. 따라서, 본 논문의 회복 기법은 백업 과정과 검사점 정보를 저장하기 위해 필요한 부가적인 저장 공간을 요구하지 않기 때문에 검사점을 사용하는 이전의 접근방법과 다르다. 게다가, 성능 분석을 위한 시뮬레이션은 본 논문의 회복 기법이 실패 후 잃어버린 사용자의 위치 정보를 회복하는데 소요되는 비용을 검사점에 기반한 회복 기법과 비교하여 상당히 줄일 수 있음을 보여준다.

퍼지추론을 이용한 지식기반 전기화재 원인진단시스템 (A Knowledge-based Electrical Fire Cause Diagnosis System using Fuzzy Reasoning)

  • 이종호;김두현
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.16-21
    • /
    • 2006
  • This paper presents a knowledge-based electrical fire cause diagnosis system using the fuzzy reasoning. The cause diagnosis of electrical fires may be approached either by studying electric facilities or by investigating cause using precision instruments at the fire site. However, cause diagnosis methods for electrical fires haven't been systematized yet. The system focused on database(DB) construction and cause diagnosis can diagnose the causes of electrical fires easily and efficiently. The cause diagnosis system for the electrical fire was implemented with entity-relational DB systems using Access 2000, one of DB development tools. Visual Basic is used as a DB building tool. The inference to confirm fire causes is conducted on the knowledge-based by combined approach of a case-based and a rule-based reasoning. A case-based cause diagnosis is designed to match the newly occurred fire case with the past fire cases stored in a DB by a kind of pattern recognition. The rule-based cause diagnosis includes intelligent objects having fuzzy attributes and rules, and is used for handling knowledge about cause reasoning. A rule-based using a fuzzy reasoning has been adopted. To infer the results from fire signs, a fuzzy operation of Yager sum was adopted. The reasoning is conducted on the rule-based reasoning that a rule-based DB system built with many rules derived from the existing diagnosis methods and the expertise in fire investigation. The cause diagnosis system proposes the causes obtained from the diagnosis process and showed possibility of electrical fire causes.

FCM기반 퍼지추론 시스템의 구조 설계: WLSE 및 LSE의 비교 연구 (Structural Design of FCM-based Fuzzy Inference System : A Comparative Study of WLSE and LSE)

  • 김욱동;오성권;김현기
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.981-989
    • /
    • 2010
  • In this study, we introduce a new architecture of fuzzy inference system. In the fuzzy inference system, we use Fuzzy C-Means clustering algorithm to form the premise part of the rules. The membership functions standing in the premise part of fuzzy rules do not assume any explicit functional forms, but for any input the resulting activation levels of such radial basis functions directly depend upon the distance between data points by means of the Fuzzy C-Means clustering. As the consequent part of fuzzy rules of the fuzzy inference system (being the local model representing input output relation in the corresponding sub-space), four types of polynomial are considered, namely constant, linear, quadratic and modified quadratic. This offers a significant level of design flexibility as each rule could come with a different type of the local model in its consequence. Either the Least Square Estimator (LSE) or the weighted Least Square Estimator (WLSE)-based learning is exploited to estimate the coefficients of the consequent polynomial of fuzzy rules. In fuzzy modeling, complexity and interpretability (or simplicity) as well as accuracy of the obtained model are essential design criteria. The performance of the fuzzy inference system is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules(clusters) and the order of polynomial in the consequent part of the rules. Accordingly we can obtain preferred model structure through an adjustment of such parameters of the fuzzy inference system. Moreover the comparative experimental study between WLSE and LSE is analyzed according to the change of the number of clusters(rules) as well as polynomial type. The superiority of the proposed model is illustrated and also demonstrated with the use of Automobile Miles per Gallon(MPG), Boston housing called Machine Learning dataset, and Mackey-glass time series dataset.

FUZZY 추론 시스템 기반 미세먼지 판단 (Fine particulate Judgment based on Fuzzy Inference System)

  • 홍유식
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권5호
    • /
    • pp.127-133
    • /
    • 2020
  • WHO 산하 국제 암 연구소 에서는 미세먼지를 1급 발암물질로 지정했다. 미세먼지는 대기 중에 떠다니며 눈에 보이지 않을 정도로 작은 먼지를 말한다. 미세먼지는 주로 석탄이나 석유 같은 화석연료의 연소과정에서 배출되며, 페질환, 페렴, 심장질환을 유발 할 수 있는 위험 인자 이다. 환경부에서는, 최근 미세먼지 측정소 10곳의 산출자료를 분석한 결과, 약 60% 정도가 기존 대기측정농도가 더 높게 나오는 오류가 있다고 발표하였다. 미세먼지를 정확하게 예측하기 위해서는, 풍향, 측정위치를 반드시 보정해야 한다. 본 논문에서는 이러한 문제점을 해결하기 위해서, 퍼지 규칙을 이용해서 이러한 문제점을 해결하였다. 뿐만 아니라, 길거리 보행자가 실제로 느끼는 미세먼지 체감지수를 산출하기 위해서, 본 논문에서는 날씨조건, 온도조건, 습도조건, 바람조건을 고려한 미세먼지 체감지수 산출 컴퓨터 모의실험을 수행 하였다.

비절전 가전기기를 위한 에너지 관리 시스템의 뉴로-퍼지 기반 지능형 추론 알고리즘 설계 (Design of Neuro-Fuzzy based Intelligent Inference Algorithm for Energy Management System with Legacy Device)

  • 최인환;유성현;정준호;임묘택;오정준;송문규;안춘기
    • 전기학회논문지
    • /
    • 제64권5호
    • /
    • pp.779-785
    • /
    • 2015
  • Recently, home energy management system (HEMS) for power consumption reduction has been widely used and studied. The HEMS performs electric power consumption control for the indoor electric device connected to the HEMS. However, a traditional HEMS is used for passive control method using some particular power saving devices. Disadvantages with this traditional HEMS is that these power saving devices should be newly installed to build HEMS environment instead of existing home appliances. Therefore, an HEMS, which performs with existing home appliances, is needed to prevent additional expenses due to the purchase of state-of-the-art devices. In this paper, an intelligent inference algorithm for EMS at home for non-power saving electronic equipment, called legacy devices, is proposed. The algorithm is based on the adaptive network fuzzy inference system (ANFIS) and has a subsystem that notifies retraining schedule to the ANFIS to increase the inference performance. This paper discusses the overview and the architecture of the system, especially in terms of the retraining schedule. In addition, the comparison results show that the proposed algorithm is more accurate than the classic ANFIS-based EMS system.