• 제목/요약/키워드: 퍼지적합도

검색결과 255건 처리시간 0.023초

반복적 부스팅 학습을 이용한 문서 여과 (Text Filtering using Iterative Boosting Algorithms)

  • 한상윤;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권4호
    • /
    • pp.270-277
    • /
    • 2002
  • 문서 여과 문제 (text filtering)는 어떤 문서가 특정한 주제에 속하는지의 여부를 판별하는 문제이다. 인터넷과 웹이 널리 퍼지고 이메일로 전송되는 문서의 양이 폭발적으로 증가함에 따라 문서 여과의 중요성도 따라서 증가하고 있는 추세이다. 이 논문에서는 새로운 학습 방법인 에이다부스트 학습 방법을 문서 여과 문제에 적용하여 기존의 방법들보다 우수한 분류 결과를 나타내는 문서 여과 시스템을 생성하고자 한다. 에이다 부스트는 간단한 가설의 집합을 생성하고 묶는 기법인데, 이 때 각각의 가설들은 문서가 특정 단어를 포함하고 있는지 검사하여 이에 따라 문서의 적합성을 판별한다. 먼저 최종 여과 시스템을 구성하는 각 가설의 출력이 1 또는 -1이 되는 이진 가설을 사용하는 기존의 에이다부스트 알고리즘에서 출발하여 좀 더 최근에 제안된 확신 정도 (실수값)를 출력하는 가설을 이용하는 에이다부스트 알고리즘을 적용함으로써 오류 감소 속도와 최종 오류율을 개선하고자 하였다. 또 각 데이타에 대한 초기 가중치를 연속 포아송 분포에 따라 임의로 부여하여 여러 번의 부스팅을 수행한 후 그 결과를 결합하는 방법을 사용함으로써 적은 학습 데이타로 인해 발생하는 과도학습의 문제를 완화하고자 하였다. 실험 데이터로는 TREC-8 필터링 트랙 데이타셋을 사용하였다. 이 데이타셋은 1992년도부터 1994년도 사이의 파이낸셜 타임스 기사로 이루어져 있다. 실험 결과, 실수값을 출력하는 가설을 사용했을 때 이진값을 갖는 가설을 사용했을 때 보다 좋은 결과를 보였고 임의 가중치를 사용하여 여러번 부스팅을 하는 방법이 더욱 향상된 성능을 나타내었다. 다른 TREC 참가자들과의 비교결과도 제시한다.

SEIR 모형을 이용한 전염병 모형 예측 연구 (A study of epidemic model using SEIR model)

  • 도미진;김종태;최보승
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권2호
    • /
    • pp.297-307
    • /
    • 2017
  • 질병 확산 모형은 질병의 확산 과정을 모형화 함으로써 질병이 발생하고 퍼지는 시간 내에서 통제하기 위하여 활용하고자 하는 모형이다. 본 연구에서는 질병 확산 모형의 가장 대표적인 SIR 모형에 기본적인 확장 접근을 하여 접촉군 (exposed)이라는 단계를 추가한 SEIR 모형을 이용하여 모형 구축을 하였다. 이 모형은 감염 대상군 (susceptible)의 사람들이 질병에 노출 된 잠복기를 거쳐 일정 시간이 경과한 후 감염되어 감염군 (infected)으로 이동한 후 다시 회복군 (removed)으로 이동하는 모형이다. 이와 같이 질병에 감염된 후 감염력이 생기는 잠복기가 있는 경우에 연구에 활용될 수 있다. 본 연구에서는 2015년 국내에서 발생한 메르스 코로나바이러스 (Middle East respiratory syndrome coronavirus; MERS CoV)에 의한 호흡기 감염증 자료를 수집하였다. 질병의 확산 과정이 결정적이 아닌 확률적인 흐름을 따른다고 가정하여 포아송 확률과정을 따른다고 보고 확률적 화학반응 모형을 이용하여 모형을 구축하였다. 모형을 구현하기 위해서 SEIR 모형의 세 모수인 질병에 노출된 정도를 나타내는 접촉률 (exposed rate), 질병의 감염 정도를 나타내는 감염률 (transmission rate), 질병의 회복정도를 나타내는 회복률 (recovery rate)를 추정함으로써, SEIR 모형에 적합하고 전염병 확산에 대한 예측을 수행하였다. 또한 접촉군이 정확하게 관찰되지 않을 부분을 보완하기 위하여 접촉군을 생성하는 과정을 전체 모형 구축 과정에 추가하였다.

QRS 특징점 변화에 따른 바이너리 코딩 기반의 부정맥 분류 (Arrhythmia Classification based on Binary Coding using QRS Feature Variability)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제17권8호
    • /
    • pp.1947-1954
    • /
    • 2013
  • 부정맥 검출을 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경망, 퍼지 이론, SVM 등과 같은 비선형 방법이 주로 사용되어 왔다. 이러한 대부분의 방법들은 P-QRS-T 지점의 정확한 측정을 필요로 하며, 데이터의 가공 및 연산이 복잡하다. 또한 P파, T파의 개인차가 있어 파형을 구분할 수 없을 경우도 존재한다. 따라서 이러한 문제점을 극복하기 위해서는 최소한의 특징점을 추출함으로써 연산의 복잡도를 줄이고, 실시간으로 다양한 부정맥을 분류할 수 있는 적합한 알고리즘의 설계가 필요하다. 따라서 본 연구에서는 QRS 특징점 변화에 따른 바이너리 코딩 기반의 실시간 부정맥 분류 방법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파, RR 간격, QRS 폭을 추출하고, 각 특징점들의 문턱치(threshold) 만족 여부를 바이너리 코드화시킴으로써 실시간으로 부정맥을 분류 하였다. 제안한 방법의 우수성을 입증하기 위해 39개의 MIT-BIH 부정맥 데이터베이스 레코드를 대상으로 PVC, PAC, Normal, BBB, Paced beat의 검출률을 비교하였다. 실험결과 PVC, PAC, Normal, BBB, Paced beat는 각각 97.18%, 94.14%, 99.83%, 92.77%, 97.48%의 우수한 평균 검출률을 나타내었다.

2019년 국내 사과와 배 화상병 대발생과 그 특징 (Outbreak of Fire Blight of Apple and Pear and Its Characteristics in Korea in 2019)

  • 함현희;이경재;홍성준;공현기;이미현;김현란;이용환
    • 식물병연구
    • /
    • 제26권4호
    • /
    • pp.239-249
    • /
    • 2020
  • 2019년 국내의 사과와 배에 화상병이 크게 발생한 원인을 파악하기 위하여 화상병 발생한 30개 과원을 대상으로 각각의 발생 상황과 농가 면담을 통해 경종적 특징 등을 조사하였다. 화상병은 이미 감염된 지 2년 이상 오래 된 과원에서 대부분 발생하였는데, 이런 원인은 (1) 농가가 병 증상을 정확히 알지 못하여 농작업과 방화곤충 등을 통해 과원 내에서 퍼지게 되고, (2) 방화곤충이나 농작업자 등에 의해 처음 발생 과원에서 주변 과수원으로 확산되었고, (3) 동일 경작자 또는 공동 농작업자에 의해 근거리 또는 원거리로 확산된 것이라고 추정할 수 있다. (4) 이런 일련의 과정이 새롭게 확산된 지역에서 반복되다가 농가들이 화상병을 알게 되면서 신고가 증가한 것이 2019년 화상병 대발생의 일련의 원인이라고 추정할 수 있었다. 국내에서 화상병 확산을 최소화하기 위해서는 조기진단을 위한 철저한 농업인 교육과 무병징 식물체에서도 화상병균 진단이 가능한 정량적 검출기술이 요구되고 있다. 또한 큰 열매를 주로 생산하는 국내 재배법에 적합한 약제방제 체계 개발이 필요하다. 화상병 방제에서 가장 중요한 가지의 궤양 증상, 묘목, 양봉장 등의 전염원 관리를 위해서 과원별 병원균의 분자역학연구를 통해 정확한 확산경로를 구명할 것을 제안한다.

우선순위 기반의 상황충돌 해석 조명제어시스템 구현 (An Implementation of Lighting Control System using Interpretation of Context Conflict based on Priority)

  • 서원일;권숙연;임재현
    • 인터넷정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.23-33
    • /
    • 2016
  • 현재의 스마트 조명은 센서를 통해 사용자의 행위와 위치를 판별한 후 현재 상황에 적합한 조명 환경이 서비스되도록 구성되어 있다. 이러한 센서 기반의 상황인식 기술은 현재까지 단일 사용자만을 고려할 뿐 여러 사용자들의 다양한 상황 발생과 충돌을 해석하기 위한 연구는 미흡하다. 기존 연구에서는 상황충돌을 해결하기 위한 방법론으로 퍼지이론 및 ReBa 등의 알고리즘을 사용해 왔다. 이는 사용자들이 위치한 공간을 여러 영역으로 구분한 후 각 구역별로 서비스를 제공함으로써 발생 가능한 상황충돌의 기회를 회피할 뿐 개인 선호도 기반의 상황충돌 해석이 가능한 맞춤형 서비스 유형으로 볼 수 없다. 본 논문에서는 여러 사용자에게 다양한 상황이 동시 발생되어 서비스 충돌에 직면할 때, 상황의 유형에 따라 부여된 우선순위를 기준으로 서비스를 결정하는 우선순위 기반 다중 상황충돌 해석이 가능한 LED 조명제어시스템을 제안한다. 본 연구에서는 주거환경을 'Living Room', 'Bed Room', 'Study Room', 'Kitchen', 'Bath Room'의 5개 구역으로 구분하고 여러 명의 사용자를 대상으로 각 구역 내에서 발생 가능한 상황들을 'exercising', 'doing makeup', 'reading', 'dining', 'entering' 등 총 20가지로 정의한다. 시스템은 온톨로지 기반 모델을 이용하여 사용자의 다양한 상황을 정의하고 규칙기반의 룰 및 추론엔진을 통해 사용자 중심의 조명환경을 서비스한다. 또한 동일 공간 및 동일 시점에 사용자들 간의 다양한 상황충돌 이슈를 해결하기 위해 사용자 집중력이 요구되는 상황을 최우선으로 정하고, 동일한 우선순위를 가진 상황일 경우 시각적 편안함을 차선으로 순위를 부여하여 충돌 발생 시 서비스 선택의 기준으로 활용한다.