• Title/Summary/Keyword: 퍼지위험분석

Search Result 59, Processing Time 0.024 seconds

An Analysis on Structure of Risk Factor for Maritime Terrorism using FSM and AHP (해상테러 위험요소의 구조와 우선순위 분석)

  • Jang Woon-Jae;Keum Jong-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.343-348
    • /
    • 2004
  • Since the destruction of World Trade Center the attention of the united States and the wider international community has focussed upon the need to strengthen security and prevent terrorism. This paper suggests an analysis prior to risk factor and structure for anti-terrorism in the korean maritime society. For this, in this paper, maritime terror risk factor was extracted by type and case of terror using brainstorming method. Also, risk factor is structured by FSM method and analyzed for ranking of each risk factor by AHP. At the result, the evaluation of risk factor is especially over maximum factor for related external impact.

  • PDF

Evaluation of Risk Level for Damage of Marine Accidents in SRRs using Inner-Outer Dependence Method (내부-외부 종속법을 이용한 수색.구조 구역의 위험성 평가)

  • Jang, Woon-Jae;Keum, Jong-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.59-64
    • /
    • 2006
  • In this study, the risk of SRRs was assessed upon the scale of the damage of marine accidents. For the risk assessment, inner-outer dependence methods and special knowledge-based fuzzy logic were introduced. Also, in order to calculate the importance of assessment value in this study, a max min composition method was used for fuzzy logic based on the principle of fuzzy extension and the centroid of gravity method was used for non-fuzzy formation. In order to produce the importance of assessment items, the inner-outer dependence methods were used for assessment items, and markov analysis method was used for the importance of the final comprehensive assessment. As a result, the risk of SRR of Tongyoung and Yeosu was proven relatively higher, thus, it needs to have more rescue ships and rescue devices for relieving the risk in the future.

  • PDF

Evaluation of Risk Level for Damage of Marine Accidents in SRRs using Inner-Outer Dependence Method (내부-외부 종속법을 이용한 수색.구조 구역의 위험성 평가)

  • Jang Woon-Jae;Keum Jong-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.3 s.26
    • /
    • pp.219-224
    • /
    • 2006
  • In this study, the risk of SRRs was assessed upon the scale of the damage of marine accidents. For the risk assessment, inner-outer dependence methods and special knowledge-based fuzzy logic were introduced. Also, in order to calculate the importance of assessment value in this study, a max-min composition method was used for fuzzy logic based on the principle of fuzzy extension and the centroid of gravity method was used for non-fuzzy formation. In order to produce the importance of assessment items, the inner-outer dependence methods were used for assessment items, and markov analysis method was used for the importance of the final comprehensive assessment. As a result, the risk of SRR of Tongyoung, Mokpo and Yeosu was proven relatively higher, thus, it needs to have more rescue ships and rescue devices for relieving the risk in the future.

  • PDF

Estimating Information Security Risk-Using Fuzzy Number Compromising Quantitative and Qualitative Methods (정보 자산 보안 위험 추정-정량적, 정성적 방법을 절충한 퍼지 숫자의 활용)

  • Pak, Ro-Jin;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.6
    • /
    • pp.175-184
    • /
    • 2009
  • There have been two methods of estimating computer related security risk such as qualitative and quantitative methods which have distinctive advantages or disadvantages. The former is too narrative and somehow abstract to implement and the latter produces concrete result but needs lots of data, so that it is needed to develop a method overcoming such difficulties. It is advised to mix such two methods in a proper way depending on the conditions of a computer system. In this article, a concept of fuzzy number is employed on the way of mixing the two methods and provide a simple example using fuzzy numbers. Simulation was conducted for an assumed model system and it is demonstrated how to calculated expected and unexpected risk.

Expert System for FMECA Using Minimal Cut Set and Fuzzy Theory (최소절단집합과 퍼지이론을 이용한 FMECA 전문가 시스템)

  • Kim, Dong-Jin;Kim, Jin-O;Kim, Hyung-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.342-347
    • /
    • 2009
  • Failure Mode Effects and Criticality Analysis (FMECA) is one of most widely used methods in modern engineering system to investigate potential failure modes and its severity upon the system. While performing FMECA, the experts evaluates criticality and severity of each failure mode and visualize the risk level matrix putting those indices to column and row variable respectably. Which results uncertainty in the result. In order to handle the uncertainty and conclude risk level matrix, this paper proposes a new FMECA procedure using minimal cut set (MCS) and fuzzy theory. Severity is calculated by proposed structural importance while criticality is determined by typical equipment failure rate data from IEEE Std 493. Finally, the risk level is compounded of these indices.

A Risk Management Method Using Fuzzy Theory for Early Construction Stage (퍼지이론을 이용한 초기 건설공사의 리스크 관리 방법)

  • Hwang Ji-Sun;Lee Chan-Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.136-143
    • /
    • 2004
  • This study presents a risk management methodology using fuzzy theory for early construction stage and is focused on risk identification and risk analysis. This study identifies various risk factors associated with activities clearly construction stage, then establishes the Risk Breakdown Structure(RBS) by classifying the risks into the three groups; Common risks, risks for Earth works, and risks for Foundation works. The risk analysis method presented in this study is based on the RBS that has two levels such as upper level and lower level. The risk exposure of lower level risk factors is assessed by fuzzy inference. The weight of risks is estimated by fuzzy measure. Then, the estimated risk exposures and weights are aggregated to assess the risk exposure of upper level risks by Choquet fuzzy integral. The risk exposure of upper level risks determine the priority of risk factors in view of risk management. This study performs case study to validate the proposed method. The result of case study shows that the methodology suggested in this thesis would be utilized well in evaluating risk exposure.

Construction of an Exposure Risk Map and Spatial Knowledge Base for Asbestos in Korea (석면 공간지식베이스 구축을 통한 석면 노출위험도 작성)

  • Hwang, Jae-Hong;Lee, Byung-Joo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.393-402
    • /
    • 2011
  • Asbestos is a toxic material that can lead to lung cancer and other diseases. There is no information regarding areas in Korea that contain asbestos in nature; consequently we need to manage such areas with care. The purpose of this study was to construct a local graded map of asbestos exposure risk based on the natural occurrence of asbestos in rocks. We first developed a means of evaluating the asbestos exposure risk and produced thematic maps based on a field survey. In addition, we constructed a knowledge base for asbestos through analysis, representation and processes about asbestos data and prepare for the development of an evaluation model for asbestos exposure risk. The spatial analysis of asbestos exposure risk is based on a weighted-overlay analysis using expert opinion and the literature, and a fuzzy-overlay analysis using the uncertainty in the data. The map of asbestos exposure risk, compiled according to the weighted and fuzzy operations, is expected to be used to ensure safety and to reduce the risk of exposure to asbestos.

Design of the Neuro-Fuzzy based System for Analyzing Collision Avoidance Measures of Ships (뉴로-퍼지 기반의 선박 충돌 회피 조치 분석 시스템 설계)

  • Yi, Mira
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.113-118
    • /
    • 2017
  • Various studies on the method of ship collision risk assessment for alarm have been reported constantly, and the result of the studies is applied to navigation devices. However, it is known that navigators ignore or turn off frequent alarms from the devices of predicting collision risk, because they may avoid collisions in the most of situations. In oder to make the prediction of ship collision risk more useful, it is necessary to consider the customary actions of ship collision avoidance. This paper proposes a system of analyzing collision avoidance measures of ships according to the types of encounter and managing the avoidance history of each ship. The core module of the system is designed as a neuro-fuzzy based inference system, and the test of the module validates the proposed system.

A Study on the Development of Driving Risk Assessment Model for Autonomous Vehicles Using Fuzzy-AHP (퍼지 AHP를 이용한 자율주행차량의 운행 위험도 평가 모델 개발 연구)

  • Siwon Kim;Jaekyung Kwon;Jaeseong Hwang;Sangsoo Lee;Choul ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.192-207
    • /
    • 2023
  • Commercialization of level-4 (Lv.4) autonomous driving applications requires the definition of a safe road environment under which autonomous vehicles can operate safely. Thus, a risk assessment model is required to determine whether the operation of autonomous vehicles can provide safety to is sufficiently prepared for future real-life traffic problems. Although the risk factors of autonomous vehicles were selected and graded, the decision-making method was applied as qualitative data using a survey of experts in the field of autonomous driving due to the cause of the accident and difficulty in obtaining autonomous driving data. The fuzzy linguistic representation of decision-makers and the fuzzy analytic hierarchy process (AHP), which converts uncertainty into quantitative figures, were implemented to compensate for the AHP shortcomings of the multi-standard decision-making technique. Through the process of deriving the weights of the upper and lower attributes, the road alignment, which is a physical infrastructure, was analyzed as the most important risk factor in the operation risk of autonomous vehicles. In addition, the operation risk of autonomous vehicles was derived through the example of the risk of operating autonomous vehicles for the 5 areas to be evaluated.

A Pedestrian Collision Warning System using a Fuzzy Logic (퍼지로직을 이용한 보행자 충돌 경고 시스템)

  • Kim, Yang Ho;Kim, Kwangsoo;Kwak, Sooyeong
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.440-448
    • /
    • 2015
  • A pedestrian collision warning system which makes a judgement of pedestrian's intention to help avoiding hitting accidents is proposed. This system uses the image sequences obtained from a car black box as well as vehicle's speed obtained from a GPS. It detects pedestrians, if any, based on the Histogram of Gradient method and extracts several information such as the pedestrian's relative positions, the direction of motion vectors, and distance between vehicle and pedestrian . A fuzzy logic based on these extracted information is applied to analyze the pedestrian's safety levels. When the safety level is determined to be danger, an alarm is triggered to the driver. The performance of the proposed algorithm is tested under various driving scenarios, which shows it works successfully in real-time.