• Title/Summary/Keyword: 퍼지알고리즘

Search Result 1,540, Processing Time 0.028 seconds

2-Input 2-Output ANFIS Controller for Trajectory Tracking of Mobile Robot (이동로봇의 경로추적을 위한 2-입력 2-출력 ANFIS제어기)

  • Lee, Hong-Kyu
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.586-592
    • /
    • 2012
  • One approach of the control of a nonlinear system that has gained some success employs a fuzzy structure in cooperation with a neural network(ANFIS). The traditional ANFIS can only model and control the process in single-dimensional output nature in spite of multi-dimensional input. The membership function parameters are tuned using a combination of least squares estimation and back-propagation algorithm. In the case of a mobile robot, we need to drive left and right wheel respectively. In this paper, we proposed the control system architecture for a mobile robotic system that employs the 2-input 2-output ANFIS controller for trajectory tracking. Simulation results and preliminary evaluation show that the proposed architecture is a feasible one for mobile robotic systems.

An Application of advanced Dijkstra algorithm and Fuzzy rule to search a restoration topology in Distribution Systems (배전계통 사고복구 구성탐색을 위한 개선된 다익스트라 알고리즘과 퍼지규칙의 적용)

  • Kim, Hoon;Jeon, Young-Jae;Kim, Jae-Chul;Choi, Do-Hyuk;Chung, Yong-Chul;Choo, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.537-540
    • /
    • 2000
  • The Distribution System consist of many tie-line switches and sectionalizing switches, operated a radial type. When an outage occurs in Distribution System, outage areas are isolated by system switches, has to restored as soon as possible. At this time, system operator have to get a information about network topology for service restoration of outage areas. Therefore, the searching result of restorative topology has to fast computation time and reliable result topology for to restore a electric service to outage areas, equal to optimal switching operation problem. So, the problem can be defined as combinatorial optimization problem. The service restoration problem is so important problem which have outage area minimization, outage loss minimization. Many researcher is applying to the service restoration problem with various techniques. In this paper, advanced Dijkstra algorithm is applied to searching a restoration topology, is so efficient to searching a shortest path in graph type network. Additionally, fuzzy rules and operator are applied to overcome a fuzziness of correlation with input data. The present technique has superior results which are fast computation time and searching results than previous researches, demonstrated by example distribution model system which has 3 feeders, 26 buses. For a application capability to real distribution system, additionally demonstrated by real distribution system of KEPCO(Korea Electric Power Corporation) which has 8 feeders and 140 buses.

  • PDF

Optimal Identification of Nonlinear Process Data Using GAs-based Fuzzy Polynomial Neural Networks (유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크를 이용한 비선형 공정데이터의 최적 동정)

  • Lee, In-Tae;Kim, Wan-Su;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.6-8
    • /
    • 2005
  • In this paper, we discuss model identification of nonlinear data using GAs-based Fuzzy Polynomial Neural Networks(GAs-FPNN). Fuzzy Polynomial Neural Networks(FPNN) is proposed model based Group Method Data Handling(GMDH) and Neural Networks(NNs). Each node of FPNN is expressed Fuzzy Polynomial Neuron(FPN). Network structure of nonlinear data is created using Genetic Algorithms(GAs) of optimal search method. Accordingly, GAs-FPNN have more inflexible than the existing models (in)from structure selecting. The proposed model select and identify its for optimal search of Genetic Algorithms that are no. of input variables, input variable numbers and consequence structures. The GAs-FPNN model is select tuning to input variable number, number of input variable and the last part structure through optimal search of Genetic Algorithms. It is shown that nonlinear data model design using Genetic Algorithms based FPNN is more usefulness and effectiveness than the existing models.

  • PDF

Study of the Constant Current Fuzzy Control System Design using CRS Algorithm during Inverter DC Resistance Spot Welding Process (인버터 DC 저항점용접 공정에서 CRS 알고리즘을 이용한 정전류 퍼지 제어시스템 설계에 관한 연구)

  • Park, Hyoung-Jin;Park, Pyeong-Won;Yu, Ji-Young;Kim, Dong-Cheol;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.76-83
    • /
    • 2010
  • The purpose of this study is to propose a method to decide near-optimal settings of the constant current fuzzy control parameters using a controlled random search. This method tries to find the near-optimal settings of the constant current fuzzy control parameters through experiments. It has an advantage of being able to carry out searches in the search domain which includes some irregular points. The method suggested in this study was used to determine the fuzzy control parameters by which the desired welding current were formed during inverter DC resistance spot welding. The output variable was the ITAE (integral of time multiplied by the absolute error). This output variable was determined according to the input variables, which are the GE, GDE, and GDU. This study described how to obtained near-optimal welding current condition over a wide search space conducting a relatively small number of experiments.

Design of Optimized Multi-Fuzzy Controllers by Hierarchical Fair Competition-based Genetic Algorithms for Air-Conditioning System (에어컨시스템에 대한 계층적 공정 경쟁 유전자 알고리즘을 이용한 최적화된 다중 퍼지제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2007
  • In this paper, we propose an approach to design multi-fuzzy controllers for the superheat and the low pressure that have an influence on energy efficiency and stabilization of air conditioning system with multi-evaporators. Air conditioning system with multi-evaporators is composed of compressor, condenser, several evaporators and several expansion valves. It is quite difficult to control the air conditioning system because the change of the refrigerant condition give an impact on the overall air conditioning system. In order to solve the drawback, we design multi-fuzzy controllers which control simultaneously both three expansion valve and one compressor for the superheat and the low pressure of air conditioning system. The proposed multi fuzzy controllers are given as a kinds of controller types such as a simplified fuzzy inference type. Here the scaling factors of each fuzzy controller are efficiently adjusted by Hierarchical Fair Competition-based Genetic Algorithms. The values of performance index of the simulation results of the A company type compare with simulation results of simplified inference type.

A Study on the Efficient Welding Control System using Fuzzy-Neural Algorithm (퍼지-뉴럴 알고리즘을 이용한 효과적인 용접제어스시템에 관한 연구)

  • Kim, Gwon-hyung;Kim, Tae-yeong;Lee, Sang-bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.189-193
    • /
    • 1997
  • Generally, though we use the vision sensor or arc sensor in welding process, it is difficult to define the welding parameters which can be applied to the weld quality control. Especially, the important parameters is Arc Voltage, Welding Current, Welding Speed in arc welding process and they affect the decision of weld bead shape, the stability of welding process and the decision of weld quality. Therefore, it is difficult to determine the unique relationship between the weld bead geometry and the combination of various welding condition. Due to the various difficulties as mentioned, we intend to use Fuzzy Logic and Neural Network to solve these problems. Therefore, the combination of Fuzzy Logic and Neural network has an effect on removing the weld defects, improving the weld quality and turning the desired weld bead shape. Finally, this system can be used under what kind of welding process adequately and help us make an estimate of the weld bead shape and remove the weld defects.

  • PDF

Transformer Protective Relaying Algorithm Using Neuro-Fuzzy based on Wavelet Transform (웨이브렛 변환기반 뉴로-퍼지를 이용한 변압기 보호계전 알고리즘)

  • Lee Myoung Rhun;Lee Jong Beom;Hong Dong suk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.607-609
    • /
    • 2004
  • A breakdown occurred in power transformer causes interruption of power transmission. Protective relay should be installed in transformer to detect such a fault. Protective relaying algorithm for transformer must be included a function to discriminate between winding fault and inrushing state. Recently, current differential relay is widely used to protect power transformer. However if inrush occurs in transformer, relay can be tripped by judging as internal fault. New algorithms are required in order to such problem. This study proposes a new protective relaying algorithm using Neuro-Fuzzy inference and wavelet. A variety of transformer transient states are simulated by BCTRAN and HYSDT in EMTP. D1 coefficients of differential current are obtained by wavelet transform. D1 coefficients and RMS of 3-phase primary voltage are used to make a target data and are trained by Nwo-Fuzzy algorithm which distinguishes correctly whether internal fault occurs or not within 1/2 after fault detection. It is evaluated that the results obtained by simulations can effectively protect a transformer by contact discriminating between winding fault and inrushing state.

  • PDF

Detection of Crowd Escape Behavior in Surveillance Video (감시 영상에서 군중의 탈출 행동 검출)

  • Park, Junwook;Kwak, Sooyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.731-737
    • /
    • 2014
  • This paper presents abnormal behavior detection in crowd within surveillance video. We have defined below two cases as a abnormal behavior; first as a sporadically spread phenomenon and second as a sudden running in same direction. In order to detect these two abnormal behaviors, we first extract the motion vector and propose a new descriptor which is combined MHOF(Multi-scale Histogram of Optical Flow) and DCHOF(Directional Change Histogram of Optical Flow). Also, binary classifier SVM(Support Vector Machine) is used for detection. The accuracy of the proposed algorithm is evaluated by both UMN and PETS 2009 dataset and comparisons with the state-of-the-art method validate the advantages of our algorithm.

Optimal Auto-tuning Algorithm for Design of a Hybrid Fuzzy Controller (하이브리드 퍼지제어기의 설계를 위한 최적 자동동조알고리즘)

  • Kim, Joong-Young;Lee, Dae-Keun;Oh, Sung-Kwan;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.501-503
    • /
    • 1999
  • In this paper, the design method of a hybrid fuzzy controller with an optimal auto-tuning method is proposed. The conventional PID controller becomes so sensitive to the control environments and the change of parameters that the efficiency of its utility for the complex and nonlinear plant has been questioned in transient state. In this paper, first, a hybrid fuzzy logic controller(HFLC) is proposed. The control input of the system in the HFLC is a convex combination by a fuzzy variable of the FLC's output in transient state and the PID's output in steady state. Second, a powerful auto-tuning algorithm is presented to automatically improve the Performance of controller, utilizing the improved complex method and the genetic algorithm. The algorithm estimates automatically the optimal values of scaling factors and PID coefficients. Controllers are applied to the plants with time-delay and the DC servo motor Computer simulations are conducted at the step input and the system performances are evaluated in the ITAE.

  • PDF

Optimal Traffic Information (최적교통정보)

  • Hong, You-Sik;Park, Jong-Kug
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.76-84
    • /
    • 2003
  • Now days, It is based on GIS and GPS, it can search for the shortest path and estimation of arrival time by using the internet and cell phone to driver. But, even though good car navigation system does not create which is the shortest path when there average vehicle speed is 10 -20 Km. Therefore In order to reduce vehicle waiting time and average vehicle speed, we suggest optimal green time algorithm using fuzzy adaptive control, where there are different traffic intersection length and lane. In this paper, it will be able to forecast the optimal traffic information, estimation of destination arrival time, under construction road, and dangerous road using internet.