• Title/Summary/Keyword: 퍼지알고리즘

Search Result 1,540, Processing Time 0.026 seconds

Fuzzy Algorithms to Generate Level Controllers for Nuclear Power Plant Steam Generators (원전 증기 발생기 수위제어용 퍼지 알고리즘)

  • Moon, Byung-Soo;Park, Jae-Chang;Kim, Dong-Hwa;Kim, Byung-Koo
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.222-232
    • /
    • 1993
  • In this paper, we present two sets of fuzzy algorithms for the steam generator level control ; one for the high power operations where the flow error is available and the other for the low power operations where the flow error is not available. These are converted to a PID type controller for the high power case and to a quadratic function form of a controller for the low power case. These controllers are implemented on the Compact Nuclear Simulator at Korea Atomic Energy Research Institute and tested by a set of four simulation experiments for each. For both cases, the results show that the total variation of the level error and of the flow error are about 50% of those by the PI controllers with about one half of the control action. For the high power case, this is mainly due to the fact that a combination of two PD type controllers in the velocity algorithm form rather than a combination of two PI type controllers in the position algorithm form is used. For the low power case, the controller is essentially a PID type with a very small integral component where the average values for the derivative component input and for the controller output are used.

  • PDF

Implementation of Falls Detection System Using 3-axial Accelerometer Sensor (3축 가속도 센서를 이용한 낙상 검출 시스템 구현)

  • Jeon, Ah-Young;Yoo, Ju-Yeon;Park, Geun-Chul;Jeon, Gye-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1564-1572
    • /
    • 2010
  • In this study, the falls detection and direction classification system was implemented using 3-axial acceleration signal. The acceleration signals were acquired from the 3-axial accelerometer(MMA7260Q, Freescale, USA), and then transmitted to the computer through USB interface. The implemented system can detect falls using the newly proposed algorithm, and also classify the direction of falls using fuzzy classifier. The 6 subjects was selected for experiment and the accelerometer was attached on each subject's chest. Each subject walked in normal pace for 5 seconds, and then the fall down according to the four direction(front_fall, back_fall, left_fall and right_fall) during at least 2 second. The falls was easily detect using the newly proposed algorithm in this study. The acquired signals were analyzed after 1 second from generating falls. The fuzzy classifier was used to classify the direction of falls. The mean value of the falls detection rate was 94.79%. The classifier rate according to falls direction were 95.83% in case of front falls, 100% incase of back falls, 87.5% in case of left falls, and 95.83% in case of right falls.

A study of Vertical Handover between LTE and Wireless LAN Systems using Adaptive Fuzzy Logic Control and Policy based Multiple Criteria Decision Making Method (LTE/WLAN 이종망 환경에서 퍼지제어와 정책적 다기준 의사결정법을 이용한 적응적 VHO 방안 연구)

  • Lee, In-Hwan;Kim, Tae-Sub;Cho, Sung-Ho
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.271-280
    • /
    • 2010
  • For the next generation mobile communication system, diverse wireless network techniques such as beyond 3G LTE, WiMAX/WiBro, and next generation WLAN etc. are proceeding to the form integrated into the All-IP core network. According to this development, Beyond 3G integrated into heterogeneous wireless access technologies must support the vertical handover and network to be used of several radio networks. However, unified management of each network is demanded since it is individually serviced. Therefore, in order to solve this problem this study is introducing the theory of Common Radio Resource Management (CRRM) based on Generic Link Layer (GLL). This study designs the structure and functions to support the vertical handover and propose the vertical handover algorithm of which policy-based and MCDM are composed between LTE and WLAN systems using GLL. Finally, simulation results are presented to show the improved performance over the data throughput, handover success rate, the system service cost and handover attempt number.

An integrated framework of security tool selection using fuzzy regression and physical programming (퍼지회귀분석과 physical programming을 활용한 정보보호 도구 선정 통합 프레임워크)

  • Nguyen, Hoai-Vu;Kongsuwan, Pauline;Shin, Sang-Mun;Choi, Yong-Sun;Kim, Sang-Kyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.143-156
    • /
    • 2010
  • Faced with an increase of malicious threats from the Internet as well as local area networks, many companies are considering deploying a security system. To help a decision maker select a suitable security tool, this paper proposed a three-step integrated framework using linear fuzzy regression (LFR) and physical programming (PP). First, based on the experts' estimations on security criteria, analytic hierarchy process (AHP) and quality function deployment (QFD) are employed to specify an intermediate score for each criterion and the relationship among these criteria. Next, evaluation value of each criterion is computed by using LFR. Finally, a goal programming (GP) method is customized to obtain the most appropriate security tool for an organization, considering a tradeoff among the multi-objectives associated with quality, credibility and costs, utilizing the relative weights calculated by the physical programming weights (PPW) algorithm. A numerical example provided illustrates the advantages and contributions of this approach. Proposed approach is anticipated to help a decision maker select a suitable security tool by taking advantage of experts' experience, with noises eliminated, as well as the accuracy of mathematical optimization methods.

A Study on the Control System of Maximum Demand Power Using Neural Network and Fuzzy Logic (신경망과 퍼지논리를 이용한 최대수요전력 제어시스템에 관한연구)

  • 조성원
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.420-425
    • /
    • 1999
  • The maximum demand controller is an electrical equipment installed at the consumer side of power system for monitoring the electrical energy consumed during every integrating period and preventing the target maximum demand (MD) being exceeded by disconnecting sheddable loads. By avoiding the peak loads and spreading the energy requirement the controller contributes to maximizing the utility factor of the generator systems. It results in not only saving the energy but also reducing the budget for constructing the natural base facilities by keeping thc number of generating plants ~ninimumT. he conventional MD controllers often bring about the large number of control actions during the every inteyating period and/or undesirable loaddisconnecting operations during the beginning stage of the integrating period. These make the users aviod the MD controllers. In this paper. fuzzy control technique is used to get around the disadvantages of the conventional MD control system. The proposed MD controller consists of the predictor module and the fuzzy MD control module. The proposed forecasting method uses the SOFM neural network model, differently from time series analysis, and thus it has inherent advantages of neural network such as parallel processing, generalization and robustness. The MD fuzzy controller determines the sensitivity of control action based on the time closed to the end of the integrating period and the urgency of the load interrupting action along the predicted demand reaching the target. The experimental results show that the proposed method has more accurate forecastinglcontrol performance than the previous methods.

  • PDF

A Study on the Artificial Intelligence (AI) Training Data Quality: Fuzzy-set Qualitative Comparative Analysis (fsQCA) Approach (인공지능 학습용 데이터 품질에 대한 연구: 퍼지셋 질적비교분석)

  • Hyunmok Oh;Seoyoun Lee;Younghoon Chang
    • Information Systems Review
    • /
    • v.26 no.1
    • /
    • pp.19-56
    • /
    • 2024
  • This study is empirical research to enhance understanding of AI (artificial intelligence) training data project in South Korea. It primarily focuses on the various concerns regarding data quality from policy-executing institutions, data construction companies, and organizations utilizing AI training data to develop the most reliable algorithm for society. For academic contribution, this study suggests a theoretical foundation and research model for understanding AI training data quality and its antecedents, as well as the unique data and ethical aspects of AI. For this purpose, this study proposes a research model with important antecedents related to AI training data quality, such as data attribute factors, data building environmental factors, and data type-related factors. The study collects 393 sample data from actual practitioners and personnel from companies building artificial intelligence training data and companies developing artificial intelligence services. Data analysis was conducted through Fuzzy Set Qualitative Comparative Analysis (fsQCA) and Artificial Neural Network analysis (ANN), presenting academic and practical implications related to the quality of AI training data.

Study on Interaction of Planar Redundant Manipulator with Environment based on Intelligent Control (지능제어를 이용한 평면 여자유도 매니퓰레이터와 환경과의 상호작용에 관한 연구)

  • Yoo, Bong-Soo;Kim, Sin-Ho;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.388-397
    • /
    • 2009
  • There are many tasks which require robotic manipulators interaction with environment. It consists of three control problems, i.e., position control, impact control and force control. The position control means the way of reaching to the environment. The moment of touching to the environment yields the impact control problem and the force control is to maintain the desired force trajectory after the impact with the environment. These three control problems occur in sequence, so each control algorithm can be developed independently. Especially for redundant manipulators, each of these three control problems has been important independent research topic. For example, joint torque minimization and impulse minimization are typical techniques for such control problems. The three control problems are considered as a single task in this paper. The position control strategy is developed to improve the performance of the task, i.e., minimization of the individual joint torques and impulse. Therefore, initial conditions of the impact control problem are optimized at the previous position control algorithm. Such a control strategy yields improved result of the impact control. Similarly, the initial conditions for the force control problem are indirectly optimized by the previous position control and impact control strategies. The force control algorithm uses the individual joint torque minimization concept. It also minimizes the force disturbances. The simulation results show the proposed control strategy works well.

Data Analysis and Processing Methods of Magnetic Sensor for Measuring Wrist Gesture (손목운동 측정을 위한 자기장 센서 데이터의 분석 및 처리 방법)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.28-36
    • /
    • 2020
  • As many types of magnetic sensors are widely applied in various industries, the analysis and processing of magnetic sensor data need to be accurate. On the other hand, owing to the complexity of the magnetic field line caused by a moving magnet, the magnetic data generated by magnetic sensors are unpredictably nonlinear. Many industry systems using magnetic sensors have struggled with the nonlinear nature of magnetic sensor data. To reduce the effect of the nonlinearity, they have the target objects fixed firmly. Therefore, to collect accurate and reliable data, considerable efforts have been made to resolve the issues with the expensive tools and systems required. Through this paper, to tackle the issues, the data analysis and methodologies, including intelligent algorithms, are presented for the wrist rehabilitation system using magnetic sensors while being implemented without using expensive tools or systems. On processing magnetic sensor data, this paper adopted an intelligent algorithm, fuzzy logic, and compared the performance of other algorithms for comparison.

Performance assessment of multi-hazard resistance of Smart Outrigger Damper System (스마트 아웃리거 댐퍼시스템의 멀티해저드 저항성능평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.139-145
    • /
    • 2018
  • An outrigger system is used widely to increase the lateral stiffness of high-rise buildings, resulting in reduced dynamic responses to seismic or wind loads. Because the dynamic characteristics of earthquake or wind loads are quite different, a smart vibration control system associated with an outrigger system can be used effectively for both seismic and wind excitation. In this study, an adaptive smart structural control system based on an outrigger damper system was investigated for the response reduction of multi-hazards, including seismic and wind loads. A MR damper was employed to develop the smart outrigger damper system. Three cities in the U.S., L.A., Charleston, and Anchorage, were used to generate multi-hazard earthquake and wind loads. Parametric studies on the MR damper capacity were performed to investigate the optimal design of the smart outrigger damper system. A smart control algorithm was developed using a fuzzy controller optimized by a genetic algorithm. The analytical results showed that an adaptive smart structural control system based on an outrigger damper system can provide good control performance for multi-hazards of earthquake and wind loads.

Absolute Vehicle Speed Estimation of Unmanned Container Transporter using Neural Network Model (무인 컨테이너 운송차량의 절대속도 추정을 위한 뉴럴 네크워크 모델 적용)

  • Ha, Hee-Kwon;Oh, Kyeung-Heub
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.227-232
    • /
    • 2004
  • Vehicle dynamics control systems are complex and non-linear, so they have difficulties in developing a controller for the anti-lock braking systems and the auto-traction systems. Currently the fuzzy-logic technique to estimate the absolute vehicle speed supplies good results in normal conditions. But the estimation error in severe braking is discontented In this paper, we estimate the absolute vehicle speed of UCT(Unmanned Container Transporter) by using the wheel speed data from standard anti-lock braking system wheel speed sensors. Radial symmetric basis function of the neural network model is proposed to implement and estimate the absolute vehicle speed, and principal component analysis on input data is used 10 algorithms are verified experimentally to estimate the absolute vehicle speed and one of them is perfectly shown to estimate the vehicle speed within 4% error during a braking maneuver.