• Title/Summary/Keyword: 퍼지소속함수

Search Result 397, Processing Time 0.028 seconds

Detection of Arrhythmia Using Heart Rate Variability and A Fuzzy Neural Network (심박수 변이도와 퍼지 신경망을 이용한 부정맥 추출)

  • Jang, Hyoung-Jong;Lim, Joon-Shik
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.107-116
    • /
    • 2009
  • This paper presents an approach to detect arrhythmia using heart rate variability and a fuzzy neural network. The proposed algorithm diagnoses arrhythmia using 32 RR-intervals that are 25 seconds on average. We extract six statistical values from the 32 RR-intervals, which are used to input data of the fuzzy neural network. This paper uses the neural network with weighted fuzzy membership functions(NEWFM) to diagnose arrhythmia. The NEWFM used in this algorithm classifies normal and arrhythmia. The performances by Tsipouras using the 48 records of the MIT-BIH arrhythmia database was below 80% of SE(sensitivity) and SP(specificity) in both. The detection algorithm of arrhythmia shows 88.75% of SE, 82.28% of SP, and 86.31% of accuracy.

  • PDF

Fuzzy Inference System for the Synthesis Learning Evaluation (종합학습평가를 위한 퍼지추론 시스템)

  • Son, Chang-Sik;Kim, Jong-Uk;Jeong, Gu-Beom
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.742-746
    • /
    • 2006
  • Evaluation of learning ability of students is classified a step of diagnostic, formative and summative evaluation. This step-by-step evaluation is the standard of synthesis judgement, from a student's prior learning of preparation state to devotion of learning process and even learning result. In this paper, we propose the method of synthesis learning evaluation which is considered evaluation of each step in using fuzzy inference. In order to get objective evaluation of learning ability, we applied to the weights by evaluation steps. And we reflected defuzzification values of final evaluation membership function interval obtained by fuzzy inference about diagnostic, formative and summative evaluation. As a result, it processes definite inference ensures objectivity and shows validity of the synthesis evaluation method.

Design of a Fuzzy Logic Controller Using an Adaptive Evolutionary Algorithm for DC Series Motors (적응진화 알고리즘을 사용한 DC 모터 퍼지 제어기 설계에 관한 연구)

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1019-1028
    • /
    • 2007
  • In this paper, adaptive evolutionary algorithm(AEA) is proposed, which uses both genetic algorithm(GA) with good global search capability and evolution strategy(ES) with good local search capability in an adaptive manner, when population evolves to the next generation. In the reproduction procedure, proportion of the population for GA and ES is adaptively determined according to their fitness. The AEA is used to design membership functions and scaling factors of the fuzzy logic controller(FLC). To evaluate the performance of the proposed FLC design method, we make an experiment on the FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than PD controller.

A Efficient Control of Wind Velocity Using Thermal Images and a Fuzzy Control Method (퍼지 제어 기법과 열 영상을 이용한 효율적인 풍속 제어)

  • Kim, Ji-hyun;Woo, Young Woon;Kim, Kwang-beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.391-395
    • /
    • 2009
  • 최근 한정된 자원으로 인한 에너지 수요가 증가하면서 에너지 절약 문제가 중요한 과제로 대두되었다. 본 논문에서는 효율적인 에너지 절약 문제를 해결하기 위한 방법으로 열 영상과 퍼지 제어 기법을 적용하여 실내 냉방 장치의 풍향과 풍속을 제어하는 방법을 제시한다. 본 논문에서는 실내 냉방 장치의 풍향과 풍속을 제어하기 위해 획득한 초기 열 영상을 색상 분포 영상으로 변환한다. 색상 분포 영상은 Red, Magenta, Yellow, Green, Sky, Blue의 온도 값을 가지는 RGB 값이며 각 색상은 $24.0^{\circ}C$에서 $27.0^{\circ}C$의 분포의 온도 값을 가진다. 본 논문에서는 색상 분포 영상을 좌에서 우로 5개의 계층 구간으로 분류하여 온도를 분석한다. 실내 공간의 색상 분포 영상을 분석하여 얻어진 각 계층 구간의 온도와 대기 중의 습도를 퍼지 소속 함수에 적용하여 구해진 결과 값을 비퍼지화 하고 최종적으로 풍향의 세기를 제어한다. 그리고 열 영상을 분석하여 풍향의 우선순위, 풍향의 지속시간을 결정한다. 제안된 방법을 $300{\times}400$ 크기의 열 영상을 대상으로 기존의 시스템과의 전력량 차이를 시뮬레이션 한 결과, 제안된 방법이 효과적인 것을 확인할 수 있었다.

  • PDF

Modeling and Tuning of 2-DOF PID Controller of Gas turbine Generation Unit by ANFIS (적응형 신경망-퍼지 추론법에 의한 가스터빈 발전 시스템의 모델링 및 2자유도 PID 제어기 튜닝)

  • 김동화
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.30-37
    • /
    • 2000
  • We studied on acquiring of transfer function and tuning of 2-DOF PID controller using ANFIS for the optimum control to turbine's variables variety. Since the shape of a membership function in the ANFIS based on the characteristics of plant. ANFIS based control method is effective for plant that its variable vary. On the other hand, a start-up time is very short and its variable's value for optimal start-up in gas turbine should be varied, but it is very difficult for such a controller to design. In this paper, we tune 2-DOF PID controller after apply a ANFIS to the operating data of Gun-san gas turbine and verify the characteristics. Its results is compared to the conventional PID controller and discuss. We expect this method will be used for another process because it is studied on the real operating data.

  • PDF

Study on Water Stage Prediction using Neuro-Fuzzy with Genetic Algorithm (Neuro-Fuzzy와 유전자알고리즘을 이용한 수위 예측에 관한 연구)

  • Yeo, Woon-Ki;Seo, Young-Min;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.382-382
    • /
    • 2011
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이며, 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이는 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 수위를 직접 예측함으로써 이러한 오차의 문제점을 극복 하고자 한다. Neuro-Fuzzy 모형은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 소속함수를 최적화함으로서 모형의 구조를 스스로 조직화한다. 따라서 수학적 알고리즘의 적용이 어려운 강우와 유출관계를 하천유역이라는 시스템에서 발생된 신호체계의 입 출력패턴으로 간주하고 인간의 사고과정을 근거로 추론과정을 거쳐 수문계의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 이러한 유전자 알고리즘은 전역 샘플링을 중심으로 한 수법으로 해 공간상에서 유전자의 개수만큼 복수의 탐색점을 설정할 뿐만 아니라 교배와 돌연변이 등으로 좁아지는 탐색점 바깥의 영역으로 탐색을 확장할 수 있기 때문에 지역해에 빠질 위험성이 크게 줄어든다. 따라서 예측과 패턴인식에 강한 뉴로퍼지 모형의 해 탐색방법을 유전자 알고리즘을 사용한다면 보다 정확한 해를 찾는 것이 가능할 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 상류의 수위자료로부터 하류의 단시간 수위예측에 관해 연구하였으며, 이를 위해 유전자 알고리즘을 이용항여 소속함수를 최적화 시키는 형태의 Neuro-Fuzzy모형에 대하여 연구하였다.

  • PDF

A Fuzzy Controller for the Steam Generator Water Level Control and Its Practical Self-Tuning Based on Performance (증기발생기 수위제어를 위한 퍼지제어기 구현 및 제어성능지수를 이용한 제어기 의 Self-Tuning)

  • Na, Nan-Ju;Bien, Zeun-Gnam
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.317-326
    • /
    • 1995
  • The oater level control system of the steam generator in a pressurized water reactor and its control Problems are analysed. In this work a stable control strategy Particularly during low Power operation based on the fuzzy control method is studied. The control strategy employs substitutional information using the bypass valve opening instead of incorrectly measured signal at the low How rate as the fuzzy variable of the flow rate during low power operation, and includes the flexible scale adjusting method for fast response at a large transient. A self-tuning algorithm based on the control performance and the descent method is also suggested for tuning the membership function scale. It gives a practical way to tune the controller under real operation. Simulation was carried out on the Compact Nuclear Simulator set up at Korea Atomic Energy Research Institute and its result showed the good performance of the controller and effectiveness of its tuning.

  • PDF

A PD-Fuzzy Controller Design of 2 D.O.F. Wheeled Mobile Robot Using Genetic and Immune Algorithm (유전 및 면역 알고리즘을 이용한 2자유도 구륜 이동 로봇에 대한 PD-Fuzzy 제어기 설계)

  • Kim, Sung-Hoe;Kim, Ki-Yeoul;Lim, Ho;Park, Chong-Kug
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.19-28
    • /
    • 2000
  • It is not so easy to control the wheeled mobile robot because of some causes like non-holonomic constraints. To overcome these problems, a controller that PD system is combined with fuzzy process is composed of several steps that have each separate algorithm and niche search algorithm and immune algorithm is applied partly. Output term set is changed by search that is performed to get optimal elements and then the rule base is also reformed. The fitness for the altered system is estimated and the surplus elements are removed. After the adjustment of output term set and rule base is finished, input and output membership functions is tuned.

  • PDF

Analysis of Nonlinear Behavior in Love Model as External Force with Gaussian Fuzzy Membership Function (가우시안 퍼지 소속 함수를 외력으로 가진 사랑 모델에서의 비선형 거동 해석)

  • Bae, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • Recently, studying chaotic dynamic have been concerned by many researchers in areas of physics, chemistry, mathematics, engineering and social science. Especially, model of addiction, happiness, family and love become major research subjects in the social science. Among these models, love is one of the four emotions that human being have. There are many definitions for love, however, each definitions of love does not coincide with each other. Recently, one of the most important efforts for research is love and it is represented by derivative equation. Then they try to find nonlinear or chaotic behavior from this derivative equation. This paper propose Gaussian fuzzy membership function in order to make external force that are close to action and awareness of human based on love model of Romeo and Juliet with external force. This paper also confirms the existence of nonlinear characteristics through time series and phase portrait.

Feature selection and Classification of Heart attack Using NEWFM of Neural Network (뉴럴네트워크(NEWFM)를 이용한 심근경색의 특징추출과 분류)

  • Yoon, Heejin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.151-155
    • /
    • 2019
  • Recently heart attack is 80% of the sudden death of elderly. The causes of a heart attack are complex and sudden, and it is difficult to predict the onset even if prevention or medical examination is performed. Therefore, early diagnosis and proper treatment are the most important. In this paper, we show the accuracy of normal and abnormal classification with neural network using weighted fuzzy function for accurate and rapid diagnosis of myocardial infarction. The data used in the experiment was data from the UCI Machine Learning Repository, which consists of 14 features and 303 sample data. The algorithm for feature selection uses the average of weight method. Two features were selected and removed. Heart attack was classified into normal and abnormal(1-normal, 2-abnormal) using the average of weight method. The test result for the diagnosis of heart attack using a weighted fuzzy neural network showed 87.66% accuracy.