• Title/Summary/Keyword: 퍼지변수

Search Result 438, Processing Time 0.032 seconds

Modeling and Tuning of 2-DOF PID Controller of Gas turbine Generation Unit by ANFIS (적응형 신경망-퍼지 추론법에 의한 가스터빈 발전 시스템의 모델링 및 2자유도 PID 제어기 튜닝)

  • 김동화
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.30-37
    • /
    • 2000
  • We studied on acquiring of transfer function and tuning of 2-DOF PID controller using ANFIS for the optimum control to turbine's variables variety. Since the shape of a membership function in the ANFIS based on the characteristics of plant. ANFIS based control method is effective for plant that its variable vary. On the other hand, a start-up time is very short and its variable's value for optimal start-up in gas turbine should be varied, but it is very difficult for such a controller to design. In this paper, we tune 2-DOF PID controller after apply a ANFIS to the operating data of Gun-san gas turbine and verify the characteristics. Its results is compared to the conventional PID controller and discuss. We expect this method will be used for another process because it is studied on the real operating data.

  • PDF

A New Similarity Measure based on RMF and It s Application to Linguistic Approximation (상대적 소수 함수에 기반을 둔 새로운 유사성 측도와 언어 근사에의 응용)

  • Choe, Dae-Yeong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.463-468
    • /
    • 2001
  • We propose a new similarity measure based on relative membership function (RMF). In this paper, the RMF is suggested to represent the relativity between fuzzy subsets easily. Since the shape of the RMF is determined according to the values of its parameters, we can easily represent the relativity between fuzzy subsets by adjusting only the values of its parameters. Hence, we can easily reflect the relativity among individuals or cultural differences when we represent the subjectivity by using the fuzzy subsets. In this case, these parameters may be regarded as feature points for determining the structure of fuzzy subset. In the sequel, the degree of similarity between fuzzy subsets can be quickly computed by using the parameters of the RMF. We use Euclidean distance to compute the degree of similarity between fuzzy subsets represented by the RMF. In the meantime, we present a new linguistic approximation method as an application area of the proposed similarity measure and show its numerical example.

  • PDF

The Navigation Control for Intelligent Robot Using Genetic Algorithms (유전알고리즘을 이용한 지능형 로봇의 주행 제어)

  • Joo, Young-Hoon;Cho, Sang-Kyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.451-456
    • /
    • 2005
  • In this paper, we propose the navigation control method for intelligent robot using messy genetic algorithm. The fuzzy controller design for navigation of the intelligent robot was dependant on expert's knowledge. But, the parameters of the fuzzy logic controller obtained from expert's control action may not be outimal. In this paper, to solve the above problem, we propose the identification method to automatically tune the number of fuzzy rule and parameters of memberships of fuzzy controller using mGA. Finally, to show and evaluate the generality and feasibility of the proposed method, we provides some simulations for wall following navigation of intelligent robot.

Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems with Information Granulation (정보 Granules에 의한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계)

  • 박건준;김현기;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.467-470
    • /
    • 2004
  • 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. 일반적으로, 정보 granules는 근접성, 유사성 또는 기능성 등에 인하여 서로 결합되는 요소(특히, 수치 데이터)의 실체이다. 본 논문에서는 비선형 시스템의 퍼지모델을 위해 정보 granules에 의한 퍼지 관계 기반 퍼지 추론 시스템을 최적 설계한다. 제안된 퍼지 모델은 정보 데이터의 특성을 살리기 위해 HCtl 클러스터링 방법에 의한 중심값을 이용하여 모든 입력변수가 상호 관계한 전반부/후반부 구조 및 파라미터 동정을 시행한다. 두 가지 형태의 퍼지 추론 방법은 간략 추론과 선형추론에 의해 수행되고 삼각형 멤버쉽 함수를 사용한다. 구축된 정보 granule 기반 퍼지 모델은 유전자 알고리즘을 이용하여 전반부 파라미터를 최적으로 동정한다. 그리고 학습 및 테스트 데이터의 성능 결과의 상호균형을 얻기 위한 하중값을 가진 성능지수를 사용하여 근사화와 예측성능의 향상을 꾀하며, 기존 문헌과의 성능비교를 통해 제안된 퍼지 모델을 평가한다.

  • PDF

Fuaay Decision Tree Induction to Obliquely Partitioning a Feature Space (특징공간을 사선 분할하는 퍼지 결정트리 유도)

  • Lee, Woo-Hang;Lee, Keon-Myung
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.156-166
    • /
    • 2002
  • Decision tree induction is a kind of useful machine learning approach for extracting classification rules from a set of feature-based examples. According to the partitioning style of the feature space, decision trees are categorized into univariate decision trees and multivariate decision trees. Due to observation error, uncertainty, subjective judgment, and so on, real-world data are prone to contain some errors in their feature values. For the purpose of making decision trees robust against such errors, there have been various trials to incorporate fuzzy techniques into decision tree construction. Several researches hove been done on incorporating fuzzy techniques into univariate decision trees. However, for multivariate decision trees, few research has been done in the line of such study. This paper proposes a fuzzy decision tree induction method that builds fuzzy multivariate decision trees named fuzzy oblique decision trees, To show the effectiveness of the proposed method, it also presents some experimental results.

Optimal Design of Interval Type-2 Fuzzy Set-based Multi-Output Fuzzy Neural Networks (다중 출력을 가지는 Interval Type-2 퍼지 집합 기반 퍼지 뉴럴 네트워크 최적 설계)

  • Park, Keon-Jun;Kim, Yong-Kab;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1968-1969
    • /
    • 2011
  • 본 논문에서는 패턴 인식을 위한 다중 출력을 가지는 Interval Type-2 퍼지 집합을 이용한 퍼지 집합 기반 퍼지 뉴럴 네트워크를 소개한다. Interval Type-2 퍼지 집합 기반 퍼지 뉴럴 네트워크는 각 입력 변수에 따른 서로 분리된 입력 공간을 분할함으로서 네트워크 및 규칙을 구성한다. 규칙의 전반부는 퍼지 입력 공간을 개별적으로 분할하여 표현하고, 각 공간은 Interval Type-2 퍼지 집합으로 구성된다. 규칙의 후반부는 패턴 인식을 위한 다중 출력을 가지며 Interval 집합을 이용하여 다항식으로서 표현된다. 다항식의 계수인 연결가중치는 오류역 전파 알고리즘을 이용하여 학습한다. 또한 실수 코딩 유전자 알고리즘을 이용하여 제안된 네트워크를 최적화한다. 제안된 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

Optimal Design of Fuzzy Set-based Fuzzy Neural Network with Multi-Output and Its application to Partial Discharge Pattern Recognition (다중 출력을 가진 퍼지 집합 기반 퍼지뉴럴네트워크 최적 설계 및 부분방전 패턴인식으로의 적용)

  • Park, Geon-Jun;O, Seong-Gwon;Kim, Hyeon-Gi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.411-414
    • /
    • 2008
  • 본 논문에서는 다중 출력을 가지는 퍼지 집합 기반 퍼지뉴럴네크워크(Fuzzy-Nueral Network; FNN)를 설계한다. 퍼지 집한 기반 퍼지뉴럴네트워크는 각 입력 변수에 따른 개별적인 입력 공간을 공간 분할함으로서 네트워크를 구성한다. 규칙의 전반부는 앞서 언급한 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 각 입력에 대한 전반부 멤버쉽 함수의 정점과 학습률 및 모멤텀 계수를 유전자 알고리즘을 이용하여 최적 동조한다. 따라서 유전자 알고리즘을 이용하여 퍼지뉴럴네트워크를 최적 설계한다. 제안된 네트워크는 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 200개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류한다.

  • PDF

Generation Method of a Proximity Relation for Fuzzy Query Processing (퍼지 질의 처리를 위한 근접관계의 생성방법)

  • 김창석;김대수;이상조
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.13-23
    • /
    • 1994
  • 실용적인 퍼지 데이타베이스 시스템을 구축하는데 장애 요인중의 하나는 근접관계와 같은 의미 데이타를 습득하는 것이다. 근접관계란 어떤 도메인에서 데이타들간의 근사 혹은 유사한 정도를 정량적으로 표현한 것이다.퍼지 데이타베이스 시스템은 부정확한 질의를 처리할때 이런 근접관계를 이용한다. 지금까지 근접도를 측정하는 체계적인 방법은 별로 알려진 것이 없고 대부분은 근접관계는 미리 주어진다는 가정하에 퍼지 데이타베이스를 연구하여 왔다. 본 논문에서는 퍼지 질의 처리에 필요한 근접관계 생성 방법을 제안한다. 제안된 방법은 퍼지 잡합의 퍼지척도 측정 이론에 기반을 두었기 때문에 간단하고 체계적이며, 각 데이타에 특정값만 부여함으로써 해당 도메인내의 데이타들과의 근접도를 자동적으로 구할 수 있다. 특히 조정 변수를 이용하여 도메인내의 근접도 간격을 조절할 수 있어 실제 응용분야에 맞게 조절할 수가 있다.퍼지 질의 처리를 위한 근접도 생성방법이 별로 발표되어 있지 않은 현 상황에서 본 논문에서 제시한 방법은 실용적인 퍼지 데이타베이스를 구현할때에 필요한 근접관계 관리 모듈에 사용될 수 있다.

  • PDF

Characteristics of Gas Furnace Process by Means of Partition of Input Spaces in Trapezoid-type Function (사다리꼴형 함수의 입력 공간분할에 의한 가스로공정의 특성분석)

  • Lee, Dong-Yoon
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2014
  • Fuzzy modeling is generally using the given data and the fuzzy rules are established by the input variables and the space division by selecting the input variable and dividing the input space for each input variables. The premise part of the fuzzy rule is presented by selection of the input variables, the number of space division and membership functions and in this paper the consequent part of the fuzzy rule is identified by polynomial functions in the form of linear inference and modified quadratic. Parameter identification in the premise part devides input space Min-Max method using the minimum and maximum values of input data set and C-Means clustering algorithm forming input data into the hard clusters. The identification of the consequence parameters, namely polynomial coefficients, of each rule are carried out by the standard least square method. In this paper, membership function of the premise part is dividing input space by using trapezoid-type membership function and by using gas furnace process which is widely used in nonlinear process we evaluate the performance.

퍼지제어 시스템을 위한 마이크로컴퓨터 지원설계

  • 주해호;이재원;박창선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.187-191
    • /
    • 1992
  • 본 연구에서 퍼지제어 시스템 설계를 위한 마이크로 컴퓨터 지원 설계 기법과 프로그램 FCS 를 개발하였다. 이 프로그램은 IBM-PC 호환기종 (80386,804860) 에 사용되는 Turbo-C 언어를 사용하였고, Borland C $^{++}$ 2.0 컴파일러를 사용하였다. 제어시스템의 각 요소를 모듈화 하여 동특성을 차분 방정식으로 표시하여 사용자가 쉽게 대치할 수 있도록 서브루틴화 하였다. 퍼지제어 규칙의 최적조건, 퍼지 입출력 변수의 최적조건, D/A 및 A/D 변환기의 최적 비트수, 최적 샘플링 시간을 결정 할 수 있다. 공기예열 시스템을 예로서 이 프로그램을 이용하여 설계하였다.