• Title/Summary/Keyword: 퍼지값

Search Result 780, Processing Time 0.024 seconds

Weighted Fuzzy Backward Reasoning Using Weighted Fuzzy Petri-Nets (가중 퍼지 페트리네트를 이용한 가중 퍼지 후진추론)

  • Cho Sang Yeop;Lee Dong En
    • Journal of Internet Computing and Services
    • /
    • v.5 no.4
    • /
    • pp.115-124
    • /
    • 2004
  • This paper presents a weighted fuzzy backward reasoning algorithm for rule-based systems based on weighted fuzzy Petri nets. The fuzzy production rules in the knowledge base of a rule-based system are modeled by weighted fuzzy Petri nets, where the truth values of the propositions appearing in the fuzzy production rules and the certainty factors of the rules are represented by fuzzy numbers. Furthermore, the weights of the propositions appearing in the rules are also represented by fuzzy numbers. The proposed weighted fuzzy backward reasoning generates the backward reasoning path from the goal node to the initial nodes and then evaluates the certainty factor of the goal node. The algorithm we proposed can allow the rule-based systems to perform weighted fuzzy backward reasoning in more flexible and human-like manner.

  • PDF

Cursor Moving by Voice Command using Fuzzy Inference (퍼지 추론을 이용한 음성 명령에 의한 커서 조작)

  • 추명경;손영선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.209-212
    • /
    • 2000
  • 본 논문에서 마우스 대신에 음성으로 명령을 입력하여 퍼지 추론을 통해 윈도우 화면상의 커서를 이동시키는 인터페이스를 구현하였다. 입력된 음성이 대체로 짧은 언어이기에 이를 인식하기 위하여 고립단어 인식에 강한 DTW방식을 사용하였다. DTW방식의 단점중인 하나가 음성길이가 비슷한 명령을 입력하였을 때 표준패턴 중 오차 값이 가장 작은 패턴으로 인식하는 것이다. 예를들면 아주 많이 이동해 라는 음성이 입력되었을 때 동일한 음성길이를 가진 아주 많이 오른쪽으로 인식하는 경우가 있다. 이런 오류를 해결하고자 각 패턴의 DTW 오차 값 범위와 표준 패턴의 음성길이를 기준으로 임계값을 퍼지 추론하여 명령으로서 수락 여부를 결정하였다. 판단이 애매한 부분은 사용자에게 질의를 하여 응답에 따라 수락 여부를 결정하였다.

  • PDF

Optimal Fuzzy Filter for Nonlinear Systems with Variance Constraints (분산 제약을 갖는 비선형 시스템의 최적 퍼지 필터)

  • Noh, Sun-Young;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.549-554
    • /
    • 2012
  • In this paper, we consider the optimal fuzzy filter of nonlinear discrete-time with estimation error variance constraint. First, the Takagi and Sugeno(T-S) fuzzy model is employed to approximate the nonlinear system. Next, the error state is mean square bounded, and the steady state variance of the estimation error of each state is not more than the individual predefined value. It is shown that, the addressed problem can be carried out by solving linear matrix inequality(LMI) and some algebraic quadratic matrix inequalities. Finally, some examples are provided to illustrate the design procedure and expected performance through simulations.

Color Image Segmentation Using Fuzzy-based Thresholding Method (그레이레블의 퍼지정보를 적용한 칼라영상분할법)

  • Kim, Dong-Jin;Kim, Sung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2558-2560
    • /
    • 2003
  • 본 논문은 퍼지논리를 통해 얻어지는 경계값을 이용한 영상분할법에 관한 연구이다. 영상분할은 퍼지인식의 핵심기술 및 많은 응용분야에서의 전처리과정에 사용되고 있어 그 중요성이 강조되고 있는 추세이다. 본 논문의 주요 관점은 영상의 그레이레블(gary level)에 관련된 불분명한 정보들을 퍼지논리를 기반으로 하여 자동적으로 경계값을 획득하는 새로운 영상 분할법을 제안함에 있다. 본 논문에서 제안된 영상분할법은 영상의 히스토그램을 이용하여 계산된 경계값과 불분명한 정도인 퍼지정보를 영상분할에 적용한 것이다. 제안된 알고리즘은 이론 및 실험을 통하여 증명하였다.

  • PDF

Design and Analysis of Interval Type-2 Fuzzy Logic System by Means of Genetic Algorithms (유전자 알고리즘에 의한 Interval Type-2 TSK Fuzzy Logic System의 설계 및 해석)

  • Kim, Dae-Bok;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.249-250
    • /
    • 2008
  • 본 논문에서는 Interval Type-2 TSK 퍼지 논리 시스템을 설계하고 기존의 Type-1 TSK 퍼지 논리 시스템과 비교 분석한다. Type-1 TSK 퍼지 논리 시스템과 Interval Type-2 TSK 퍼지 논리 시스템을 비교하기 위해 노이즈에 영향을 받은 목적 데이터를 사용한다. 유전자 알고리즘을 사용하여 전반부의 중심값의 학습률과 후반부 계수값의 학습률을 결정한다.

  • PDF

Word Recognition Using Multi-section Equi-segmentation and Fuzzy Inference (다구간 등분할법과 퍼지추론을 이용한 단어인식)

  • 최승호;최갑석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.47-56
    • /
    • 1993
  • 본 논문은 다구간 등분할법과 퍼지추론으로 단어인식을 행하는 패턴매칭법을 제안한다. 패턴매칭시 발생되는 시간변동은 발성순서에 따라 등간격으로 다구간 분할함으로써 해결하고, 주파수변동은 구간의 차수별로 정해진 퍼지관계로부터 패턴간의 퍼지추론이 행해짐으로써 흡수한다. 추론에 사용된 삼각형 맴버쉽 함수의 중심값과 변동폭은 패턴의 평균값과 분산값으로 대응되도록 작성한다. 20대 남성 2인이 발성한 데이터를 사용하여, 제안된 방법으로 DDD지역명 28개를 구간수와 변동폭을 달리하여 인식실험한 결과, 8구간과 4배의 변동폭을 가질 때 92%의 인식을 얻었다.

  • PDF

A Study on Auto-Tuning Method of learning Rate by Using Fuzzy Logic System (퍼지 논리 시스템을 이용한 학습률 자동 조정 방법에 관한 연구)

  • 주영호;김태영;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.484-489
    • /
    • 2003
  • 본 논문에서는 역전파 알고리즘의 성능 개선을 위해 퍼지 논리 시스템을 이용한 학습률 자동 조정 방법을 제안한다. 제안된 방법은 목표값과 출력값의 차이에 대한 절대값이 $\varepsilon$ 보다 적거나 같으면 정확성으로 분류하고 크면 부정확성으로 분류한다. 정확성의 총 개수를 퍼지 논리 시스템에 적용하여 학습률과 모멘텀을 동적으로 조정한다. 제안된 방법을 XOR 문제와 숫자패턴 문제에 적용하여 실험한 결과, 기존의 역전파 알고리즘, 모멘텀 방식, Jacob의 delta-bar-delta 방식보다 성능이 개선됨을 확인하였다.

  • PDF

Image Magnification using Fuzzy Method (퍼지 기법을 이용한 영상 확대)

  • Cho, Seung-Gun;Lee, Ju-Hwa;Woo, Young-Woon;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.209-212
    • /
    • 2010
  • 본 논문에서는 영상을 확대할 경우에 발생하는 영상의 품질 저하를 최소화하기 위하여 원본 영상 픽셀과 확대된 결과 영상 픽셀 간의 명암도 차이와 보간 수행시 적용되는 가중치 값을 퍼지 기법에 적용하여 영상을 확대하는 방법을 제안한다. 제안된 방법은 기존의 양선형 보간법으로 도출된 결과 영상 픽셀과 원본 영상 픽셀 간의 명암도 차이와 보간 수행시 네 개의 픽셀 값에 곱하게 되는 가중치 값을 퍼지 소속 함수에 적용하여 원본 영상의 픽셀 정보와 가장 근접한 특징을 가진 확대된 결과 영상의 픽셀 정보를 최종적으로 도출한다. 제안된 방법을 실험한 결과, 기존의 양선형 보간법에 비해 영상 확대시, 발생하는 문제점인 흐림 현상이 상대적으로 감소하여 영상의 품질이 개선되는 것을 확인하였다.

  • PDF

Hardware Implementation of FGNN using Fuzzy Decision Function of the Genetic Algorithm (유전자 알고리즘의 퍼지 결정 함수를 이용한 FGNN 구현)

  • 변오성;문성룡
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.575-583
    • /
    • 2000
  • 본 논문에서 임의의 데이터가 입력되면 기준 영상 중에서 가장 유사도가 큰 영상을 찾아 국부 승리자로 선택하고, 그 국부 승리자 중에서 전체 승리자를 선택하여 최종 출력값을 얻는 계층적 FGNN(Fuzzy Genetic Neural Network)을 제안하고, 이에 하이브리드 퍼지 소속함수와 유전자 알고리즘을 적용하였다. 하이브리드 퍼지 소속함수는 입력 값을 0~1 사이의 값으로 함으로써 시스템의 속도를 빠르게 하고 유전자 알고리즘을 입력값을 일정한 오차 이내로 하여 최적의 영상을 얻도록 하였다. 위의 계층적 FGNN 알고리즘을 회로 설계 및 검증하였다. 또한 제안한 FGNN을 이용하여 영상에 포함된 잡음을 제거하고, 이와 유사한 구조를 가진 FDNN(Fuzzy Decision Neural Network) 성능보다 FGNN의 성능이 우수함을 여러 가지 영상을 통하여 확인하였다. 또한 모의 실험 결과 영상에 대한 평균자승오차(MSE : Mean Square Error)를 비교하였으며, 그 결과 하이브리드 퍼지 함수와 유전자 알고리즘을 적용한 FGNN이 메디안 필터, OC, CO, FDNN 등에 비해 우수함을 확인하였다. FGNN 알고리즘을 Top-Down 방식으로 VHDL(VHSIC Hardware description Language)을 이용하여 코딩(Coding)하고, Synopsys 툴을 이용하여 하드웨어를 설계하였다. 이 알고리즘의 하드웨어는 총 5개의 블록으로 가지고 있고 각각의 블록은 파이프라인 형태로 구성하고, 이는 Synopsys 툴을 이용하여 동작 및 성능을 검증하였다.

  • PDF

Design of an Adaptive Fuzzy VSC for BLDC Motor Position Control (적응 퍼지 가변구조 알고리듬을 사용한 전동기 위치제어기 설계)

  • 박광현;이훈;이대식
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.153-157
    • /
    • 2002
  • 일반적으로 가변구조제어는 외란과 변수 변화에 대해 강인한 특성을 가지지만 제어기 설계자는 이러한 값들에 대한 상한 값과 하한 값을 알아야한다. 그러나 때로는 이러한 상한 값과 하한 값을 얻는다는 것은 쉽지가 않다. 이에 반해 퍼지제어기는 외란과 변수 변화에 대한 제어기 설계에 있어서 효과적인 방법을 제공한다. 따라서 퍼지제어기와 가변구조제어기가 가지는 장점들을 결합하는 연구가 진행되어져 왔다. 본 논문에서는 리칭페이저가 존재하는 기존의 슬라이딩모드제어기를 이용하는 방법 대신 리칭페이저를 제거하여 전 구간 강인한 적응 퍼지 가변구조제어기를 설계하였다. 제안된 제어 알고리듬은 BLDC 전동기의 위치제어기로 사용하였으며, 그 타당성을 입증하였다.