• Title/Summary/Keyword: 퍼지가중치

Search Result 242, Processing Time 0.021 seconds

Fuzzy Multilayer Perceptron by Using Self-Generation (자가 생성을 이용한 퍼지 다층 퍼셉트론)

  • 백인호;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.469-473
    • /
    • 2003
  • 다층 구조 신경망에서 널리 사용되는 오류 역전파 알고리즘은 초기 가중치와 불충분한 은닉층의 노드수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ARTI에서 경계 변수의 설정에 따라 인식률이 저하되는 문제점을 개선하기 위하여 ARTI과 Max-Min 신경망을 결합한 퍼지 다층 퍼셉트론을 제안한다. 제안된 자가 생성을 이용한 퍼지 다층 퍼셉트론은 입력층에서 은닉층으로 노드를 생성시키는 방식은 ARTI을 적용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 학생증 영상을 대상으로 실험한 결과, 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상이 개선되었다.

  • PDF

Navigation of Autonomous Mobile Robot using Fuzzy Neural Network (퍼지-뉴럴 네트워크를 이용한 자율 이동로봇의 운항)

  • Choi, Jeong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.19-25
    • /
    • 2008
  • This paper proposes a hierarchically structured navigation algorithm for autonomous mobile robot under unknown environment based on fuzzy-neal network. The proposed algorithm consists of two basic layers as follows. The lower layer consists of two parts such as fuzzy algorithm for goal approach and fuzzy-neural algorithm for obstacle avoidance. The upper layer which is basically fuzzy algorithm adjusts the magnitude of the weighting factor depending on the environmental situation. The proposed algorithm provides an efficient method to escape local mimimum points as shown in the simulation result. Most simulation results show that this algorithm is very effective for autonomous mobile robots' traveling in unknown field.

Object Detection using Fuzzy Adaboost (퍼지 Adaboost를 이용한 객체 검출)

  • Kim, Kisang;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.5
    • /
    • pp.104-112
    • /
    • 2016
  • The Adaboost chooses a good set of features in rounds. On each round, it chooses the optimal feature and its threshold value by minimizing the weighted error of classification. The involved process of classification performs a hard decision. In this paper, we expand the process of classification to a soft fuzzy decision. We believe this expansion could allow some flexibility to the Adaboost algorithm as well as a good performance especially when the size of a training data set is not large enough. The typical Adaboost algorithm assigns a same weight to each training datum on the first round of a training process. We propose a new algorithm to assign different initial weights based on some statistical properties of involved features. In experimental results, we assess that the proposed method shows higher performance than the traditional one.

The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm (차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.161-165
    • /
    • 2014
  • In this paper, we proposed the fuzzy prototype pattern classifier. In the proposed classifier, each prototype is defined to describe the related sub-space and the weight value is assigned to the prototype. The weight value assigned to the prototype leads to the change of the boundary surface. In order to define the prototypes, we use Fuzzy C-Means Clustering which is the one of fuzzy clustering methods. In order to optimize the weight values assigned to the prototypes, we use the Differential Evolutionary Algorithm. We use Linear Discriminant Analysis to estimate the coefficients of the polynomial which is the structure of the consequent part of a fuzzy rule. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Effective Image Segmentation using a Locally Weighted Fuzzy C-Means Clustering (지역 가중치 적용 퍼지 클러스터링을 이용한 효과적인 이미지 분할)

  • Alamgir, Nyma;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.83-93
    • /
    • 2012
  • This paper proposes an image segmentation framework that modifies the objective function of Fuzzy C-Means (FCM) to improve the performance and computational efficiency of the conventional FCM-based image segmentation. The proposed image segmentation framework includes a locally weighted fuzzy c-means (LWFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors. Distance between a center pixel and a neighboring pixels are calculated within a window and these are basis for determining weights to indicate the importance of the memberships as well as to improve the clustering performance. We analyzed the segmentation performance of the proposed method by utilizing four eminent cluster validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), Xie-Bdni function ($V_{xb}$) and Fukuyama-Sugeno function ($V_{fs}$). Experimental results show that the proposed LWFCM outperforms other FCM algorithms (FCM, modified FCM, and spatial FCM, FCM with locally weighted information, fast generation FCM) in the cluster validity functions as well as both compactness and separation.

Distributed Multimedia Object Management Platform Using Weight and Fuzzy Filtering (가중치와 퍼지 필터링을 이용한 분산 멀티미디어 객체 관리 플랫폼)

  • Lee Chong-Deuk;Jeong Taeg-Won
    • Journal of Digital Contents Society
    • /
    • v.4 no.1
    • /
    • pp.81-90
    • /
    • 2003
  • Multimedia Platform box based on distributed environments have much effect on objects grouping for management of distributed resources. This paper utilizes weight and fuzzy filtering techniques for objects platform in distributed multimedia environments. Weight and Fuzzy filtering techniques perform grouping by references relation of multimedia objects and this paper proposes object dictionary structure.

  • PDF

Design of a Classifier Based on Supervised Learning Using Fuzzy Membership Function and Weighted Average (퍼지 소속도 함수와 가중치 평균을 이용한 지도 학습 기반 분류기 설계)

  • Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.508-514
    • /
    • 2021
  • In this paper, to propose a classifier based on supervised learning, three types of fuzzy membership functions that determine the membership of each feature of classification data are proposed. In addition, the possibility of improving the classifier performance was suggested by using the average value calculation method used in the process of deriving the classification result using the average value of the membership degrees for each feature, not by using a simple arithmetic average, but by using a weighted average using various weights. To experiment with the proposed methods, three standard data sets were used: Iris, Ecoli, and Yeast. As a result of the experiment, it was confirmed that evenly excellent classification performance can be obtained for data sets of different characteristics. It was confirmed that better classification performance is possible through improvement of fuzzy membership functions and the weighted average methods.

Navigation of Autonomous Mobile Robot with Intelligent Controller (지능제어기를 이용한 자율 이동로봇의 운항)

  • Choi, Jeong-Won;Kim, Yeon-Tae;Lee, Suk-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.180-185
    • /
    • 2003
  • This paper proposes an intelligent navigation algorithm for multiple mobile robots under unknown dynamic environment. The proposed algorithm consists of three basic parts as follows. The first part based on the fuzzy rule generates the turning angle and moving distance of the robot for goal approach without obstacles. In the second part, using both fuzzy and neural network, the angle and distance of the robot to avoid collision with dynamic and static obstacles are obtained. The final adjustment of the weighting factor based on fuzzy rule for moving and avoiding distance of the robots is provided in the third stage. The experiments which demonstrate the performance of the proposed intelligent controller is described.

An Enhanced Fuzzy ART Algorithm for Effective Image Recognition (효과적인 영상 인식을 위한 개선된 퍼지 ART 알고리즘)

  • Kim, Kwang-Baek;Park, Choong-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.262-267
    • /
    • 2007
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 된다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 학습률의 설정에 따라 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 본 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 학습률로 설정하여 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 영문 명함에서 추출한 영문자들을 대상으로 실험한 결과, 기존의 ART1과 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

  • PDF

Design of a Extended Fuzzy Information Retrieval System usins Users한 Preference (사용자의 선호도를 반영한 확장 퍼지 정보 검색 시스템의 설계)

  • 김대원;이광형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.90-93
    • /
    • 2000
  • 정보 검색 시스템의 목표는 사용자가 원하는 정보를 빠른 시간 내에 효율적으로 검색하는 것이다. 이를 위해 불리언 모델, 벡터 모델을 비롯한 기존의 많은 검색 모델들과 퍼지 이론에 기반한 퍼지 검색 모델들이 제안되어져 왔다 그러나 기존의 모델들은 관련 문서를 검색하는 데 있어서 사용자의 선호도를 반영하지 못하는 한계점을 지닌다. 본 논문에서는 기존의 퍼지 검색 모델의 단점을 보완하기 위해서 확장 퍼지 검색 모델을 제안하고 설계하였다. 제안하는 모델은 색인어와 문서 가중치의 유사도를 결정하는데 있어서 사용자의 선호도를 반영할 수 있도록 설계하였다.

  • PDF