• Title/Summary/Keyword: 퍼지가중치

Search Result 242, Processing Time 0.031 seconds

Query Term Expansion and Reweighting using Term Co-Occurrence Similarity and Fuzzy Inference (용어 발생 유사도와 퍼지 추론을 이용한 질의 용어 확장 및 가중치 재산정)

  • Kim, Ju-Yeon;Kim, Byeong-Man
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.9
    • /
    • pp.961-972
    • /
    • 2000
  • 본 논문에서는 사용자의 적합 피드백을 기반으로 적합 문서들에서 발생하는 용어들과 초기 질의어간의 발생 빈도 유사도 및 퍼지 추론을 이용하여 용어의 가중치를 산정하는 방법에 대하여 제안한다. 피드백 문서들에서 발생하는 용어들 중에서 불용어를 제외한 모든 용어들을 질의어로 확장될 수 있는 후보 용어들로 선택하고, 발생 빈도 유사성을 이용한 초기 질의어-후보 용어의 관련 정도, 용어의 IDF, DF 정보를 퍼지 추론에 적용하여 후보 용어의 초기 질의어에 대한 최종적인 관련 정도를 산정 하였으며, 피드백 문서들에서의 가중치와 관련 정도를 결합하여 후보 용어들의 가중치를 산정 하였다. 본 논문에서는 성능을 평가하기 위하여 KT-set 1.0과 KT-set 2.0을 사용하였으며, 성능의 상대적인 평가를 위하여 Dec-Hi 방법, 용어 분포 유사도를 이용한 방법, 퍼지 추론을 이용한 방법들을 정확률-재현률을 사용하여 평가하였다.

  • PDF

Face Recognition Using PCA and Fuzzy Weighted Average Method (PCA와 퍼지 가중치 평균 기법을 이용한 얼굴 인식)

  • Woo, Young-Woon;Kim, Hyung-Soo;Park, Jae-Min;Cho, Jae-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.315-316
    • /
    • 2011
  • 일반적으로 영상에서 얼굴 영상을 검출하고 인식하는 알고리즘은 패턴 인식 연구에 있어서 인간과 컴퓨터의 상호작용의 연구라는 면에서 아주 중요한 문제로 연구되어 왔다. 본 논문에서는 고유얼굴을 이용하여 유클리디언 거리법과 퍼지기법의 인식률을 비교해보고자 한다. PCA(Principal Component Analysis) 방식은 우수한 인식 결과를 보장하는 얼굴인식 기법중의 하나이며, 얼굴 영상을 이용하여 공분산 행렬을 계산하고, 공분산 행렬을 통해 생성된 저차원의 벡터, 즉 고유얼굴(Eigenface)을 이용하여 가중치를 계산하고, 이 가중치를 기준으로 인식을 수행하는 기법이다. 이를 기반으로 하여, 본 논문에서는 전처리 과정, 고유얼굴 과정, 유클리디언 거리법 및 퍼지 소속도 함수 설계 과정, 신경망 학습과정, 인식과정으로 구성된 5단계의 얼굴 인식 알고리즘을 제안한다.

  • PDF

Digital Switching Filter Algorithm using Modified Fuzzy Weights and Combined Weights in Mixed Image Noise Environment (복합 영상 잡음 환경에서 변형된 퍼지가중치 및 결합가중치를 사용한 디지털 스위칭 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.645-651
    • /
    • 2021
  • With the advent of the Fourth Industrial Revolution, modern society uses a diverse pool of devices. In this context, there is increasing interest in removing various kinds of noise arising in data transmission. However, it is difficult to restore image that damaged by mixed noise, and a digital filter that effectively restores an image according to the characteristics of the noise is required. In this paper, we propose a digital switching filter algorithm to remove mixed noise generated during digital image transmission. The proposed algorithm switches the filtering process through noise judgment and reconstructs the image using fuzzy weights and combined weights based on the pixel values inside the mask. To evaluate the proposed algorithm, we compared it with existing filter algorithms through simulation. Filtering results were expanded and compared for visual evaluation, and PSNR comparison was used for quantitative evaluation.

A Research on Inference Method in Fuzzy Production System (퍼지 프러덕션시스템의 추론방법에 관한 연구)

  • 송수섭
    • Journal of Intelligence and Information Systems
    • /
    • v.2 no.2
    • /
    • pp.1-15
    • /
    • 1996
  • 전문가의 지식을 지식베이스화하여 의사결정지원시스템으로 사용하려는 노력이 증대하고 있다. 특히 투자의사결정과 같은 원인결과의 관계를 명확히 규정할 수 없는 복작한 영역에서 전문가의 지식베이스는 비전문가의 의사결정에 중요한 조언을 제공할 수 있다. 불확실한 지식을 지식베이스화하는 한 방법으로 퍼지프러덕션시스템이 널리 사용되고 있다. 주식시장과 같은 동태적인 시스템에서 어떤 정보의 중요성은 상황에 따라 변화하는데 이를 정태적인 프로덕션시스템의 규칙으로 지식베이스화하는 것은 불가능하다. 그러나 추론을 수행하는 과정에서 수행당시 각 정보의 중요도에 부응하는 가중치를 부여하여 평가함으로써 정태적인 지식베이스에 동태적인 실제시스템의 특성을 반영할 수 있다. 이는 가중치가 높은 정보에 해당하는 조건명제의 충족정도가 해당규칙의 전체평가결과에 더욱 중요하게 반영되게 하여 좀더 현실성 있는 추론 결과를 얻게 한다. AHP(Analytic Hierachy Process) 방법에 의하여 얻어진 정보의 상대적 중요도에 따른 가중치 (w)를 해당 정보와 조건명제의 합치정도(Degree of Match : DM)에 (DM)w 의 형식으로 적용함으로써 퍼지프러덕션시스템에서 정보의 중요도를 반영하여 프러덕션규칙을 평가하는 방법을 제시한다.

  • PDF

Image Restoration Algorithm Damaged by Mixed Noise using Fuzzy Weights and Noise Judgment (퍼지 가중치와 잡음판단을 이용한 복합잡음에 훼손된 영상의 복원 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.133-135
    • /
    • 2022
  • With the development of IoT and AI technologies and media, various digital devices are being used, and unmanned and automation is progressing rapidly. In particular, high-level image processing technology is required in fields such as smart factories, autonomous driving technology, and intelligent CCTV. However, noise present in the image affects processes such as edge detection and object recognition, and causes deterioration of system accuracy and reliability. In this paper, we propose a filtering algorithm using fuzzy weights to reconstruct images damaged by complex noise. The proposed algorithm obtains a reference value using noise judgment and calculates the final output by applying a fuzzy weight. Simulation was conducted to verify the performance of the proposed algorithm, and the result image was compared with the existing filter algorithm and evaluated.

  • PDF

AWGN Removal Algorithm using Switching Fuzzy Function and Weight (스위칭 퍼지 함수와 가중치를 사용한 AWGN 제거 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.121-123
    • /
    • 2021
  • Image processing is being used in various forms in important fields of the 4th industrial revolution, such as artificial intelligence, smart factories, and the IoT industry. In particular, in systems that require data processing such as object tracking, medical images, and object recognition, noise removal is used as a preprocessing step, but the existing algorithm has a drawback in that blurring occurs in the filtering process. Therefore, in this paper, we propose a filter algorithm using switching fuzzy weights. The proposed algorithm switches the fuzzy function by dividing the low-frequency region and the high-frequency region by the standard deviation of the filtering mask, and obtains the final output according to the fuzzy weight. The proposed algorithm showed improved results compared to the existing method, and showed excellent characteristics in the region where the high-frequency component is strong.

  • PDF

A Fuzzy Weights Decision Method based on Degree of Contribution for Recognition of Insect Footprints (곤충 발자국 인식을 위한 기여도 기반의 퍼지 가중치 결정 방법)

  • Shin, Bok-Suk;Cha, Eui-Young;Woo, Young-Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.55-62
    • /
    • 2009
  • This paper proposes a decision method of fuzzy weights by utilizing degrees of contribution in order to classify insect footprint patterns having difficulties to classify species clearly. Insect footprints revealed delicately in the form of scattered spots since they are very small. Therefore it is not easy to define shape of footprints unlike other species, and there are lots of noises in the footprint patterns so that it is difficult to distinguish those from correct data. For these reasons, the extracted feature set has obvious feature values with some uncertain feature values, so we estimate weights according to degrees of contribution. If the one of feature values has distinct difference enough to decide a class among other classes, high weight is assigned to make classification. A calculated weight determines the membership values by fuzzy functions and objects are classified into the class having a superior value.atu present experimental resultseighrontribution. Iinsect footprints with noises by the proposed method.

An Enhanced Fuzzy ART Algorithm for The Identifier Recognition from Shipping Container Image (운송 컨테이너 영상의 식별자 인식을 위한 개선된 퍼지 ART 알고리즘)

  • 류재욱;김태경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.365-369
    • /
    • 2002
  • 퍼지 ART 알고리즘에서 경계 변수는 패턴들을 클러스터링하는데 있어서 반지름 값이 되며 임의의 패턴과 저장된 패턴과의 불일치(mismatch) 허용도를 결정한다. 이 경계 변수가 크면 입력 벡터와 기대 벡터 사이에 약간의 차이가 있어도 새로운 카테고리(category)로 분류하게 핀다. 반대로 경계 변수가 작으면 입력 벡터와 기대 벡터 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 벡터들을 대략적으로 분류한다. 따라서 영상 인식에 적용하기 위해서는 경험적으로 경계 변수를 설정해야 단점이 있다. 그리고 연결 가중치를 조정하는 과정에서 저장된 패턴들의 정보들이 손실되는 경우가 발생하여 인식율을 저하시킨다. 된 논문에서는 퍼지 ART 알고리즘의 문제점을 개선하기 위하여 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하고 저장 패턴들과 학습 패턴간의 실제적인 왜곡 정도를 충분히 고려하여 승자 노드로 선택된 빈도수를 가중치 조정에 적용한 개선된 퍼지 ART 알고리즘을 제안하였다. 제안된 방법의 성능을 확인하기 위해서 실제 운송 컨테이너 영상들을 대상으로 실험한 결과, 기존의 ART2 알고리즘이나 퍼지 ART 알고리즘보다 클러스터의 수가 적게 생성되었고 인식 성능도 기존의 방법들보다 우수한 성능이 있음을 확인하였다.

Aggregation of Decision Inputs with OWA(Ordered Weighted Averaging) Operators and Application to the Location Analysis of Anchorage Area (OWA를 이용한 의사전략 결합과 대기정박지 입지분석 문제 적용연구)

  • O, Se-Ung;Seo, Gi-Yeol;Park, Jong-Min;Seo, Sang-Hyeon;Park, Gye-Gak
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.265-268
    • /
    • 2007
  • 다기준 의사결정 문제에서 요인간의 가중치 계산과 계산된 요인의 평가값 종합화는 매우 중요하다. 본 연구는 다기준 의사결정 문제에 있어서 의사결정자의 의사전략 결합기법을 도출하고 다기준의사결정 문제로 적용하였다. 복잡한 환경에서 의사결정을 할 때 발생되는 모호함을 해결하기 위해 주관적 의견을 결합한 퍼지지합 이론을, 다기준 문제의 요인을 퍼지값으로 계층화하기 위해 계층분석법을 적용하였다. 또한, 의사결정자의 의사전략을 결합하기 위해 순위 가중치평균법을 이용하였다. 순위가 있는 가중치 평균방법은 퍼지집합의 orness 특성을 이용하여 의사결정자의 주관적 의지를 반영할 수 있는 기법으로, 순위가중치평균(OWA) 연산자에 따른 낙관적 혹은 비관적인 정도에 따라 주관적인 의도를 반영할 수 있는 방법이다. 다기준의사결정 문제의 적용사례로서 해상교통안전을 위한 대기정박지의 위치분석 문제를 본 연구에서 제시한 방법에 따라 적용하였다.

  • PDF

Image Magnification using Fuzzy Method (퍼지 기법을 이용한 영상 확대)

  • Cho, Seung-Gun;Lee, Ju-Hwa;Woo, Young-Woon;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.209-212
    • /
    • 2010
  • 본 논문에서는 영상을 확대할 경우에 발생하는 영상의 품질 저하를 최소화하기 위하여 원본 영상 픽셀과 확대된 결과 영상 픽셀 간의 명암도 차이와 보간 수행시 적용되는 가중치 값을 퍼지 기법에 적용하여 영상을 확대하는 방법을 제안한다. 제안된 방법은 기존의 양선형 보간법으로 도출된 결과 영상 픽셀과 원본 영상 픽셀 간의 명암도 차이와 보간 수행시 네 개의 픽셀 값에 곱하게 되는 가중치 값을 퍼지 소속 함수에 적용하여 원본 영상의 픽셀 정보와 가장 근접한 특징을 가진 확대된 결과 영상의 픽셀 정보를 최종적으로 도출한다. 제안된 방법을 실험한 결과, 기존의 양선형 보간법에 비해 영상 확대시, 발생하는 문제점인 흐림 현상이 상대적으로 감소하여 영상의 품질이 개선되는 것을 확인하였다.

  • PDF