• Title/Summary/Keyword: 팬톰

Search Result 199, Processing Time 0.024 seconds

Comparison of Hounsfield Units by Changing in Size of Physical Area and Setting Size o f Region o f Interest b y Using the CT Phantom Made with a 3D Printer (3D 프린터로 제작된 CT 팬톰을 이용한 물리적 관심영역과 설정 관심영역의 크기에 따른 하운스필드의 비교)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.421-427
    • /
    • 2015
  • In this study, we have observed the change of the Hounsfield (HU) in the alteration of by changing in size of physical area and setting size of region of interest (ROI) at focus on kVp and mAs. Four-channel multi-detector computed tomography was used to get transverse axial scanning images and HU. Three dimensional printer which is type of fused deposition modeling (FDM) was used to produce the Phantom. The structure of the phantom was designed to be a type of cylinder that contains 33 mm, 24 mm, 19 mm, 16 mm, 9 mm size of circle holes that are symmetrically located. It was charged with mixing iodine contrast agent and distilled water in the holes. The images were gained with changing by 90 kVp, 120 kVp, 140 kVp and 50 mAs, 100 mAs, 150 mAs, respectively. The 'image J' was used to get the HU measurement of gained images of ROI. As a result, it was confirmed that kVp affects to HU more than mAs. And it is suggested that the smaller size of physical area, the more decreasing HU even in material of a uniform density and the smaller setting size of ROI, the more increasing HU. Therefore, it is reason that to set maximum ROI within 5 HU is the best way to minimize in the alteration of by changing in size of physical area and setting size of region of interest.

A Comparative Study on the Head and Neck Radiation Therapy for Dynamic Conformal Arc Therapy and Volumetric Modulated Arc Therapy (두경부 방사선 치료 시 입체조형동적회전조사치료와 용적변조회전조사치료에 관한 연구)

  • Kim, Deok-Ki;Choi, CheonWoong;Choi, Jae-hyock;Won, Hui-su;Park, Cheol-soo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.208-218
    • /
    • 2015
  • Recently, radiation therapy is used in the CT existing conventional two-dimensional radiation image, and set the size and location of the tumor in a manner that the image is going to change the treatment plan. After using the simulation using CT, radiation therapy it is four-dimensional or three-dimensional treatment made possible. and radiation therapy became the more effective ever before. High technology radiation therapy such as the treatment of SRS,IMRT, IGRT, SBRT, is a need to try contemplating the possibility to apply appropriate analysis and situation, so it has its own characteristics. and then it is believed that it is necessary to analyze and try it worries the proper applicability of the situation. The configuration of the various treatment that is applicable in many hospitals is necessary to try to determine how to practically apply the patients. Critical organs surrounding tumor give a small dose to avoid side effects and then the tumor has the therapeutic effect by providing a larger dose than before the radiation treatment.

Verification of skin dose according to the location of tumor in Tomotherapy (토모테라피 시 종양의 위치에 따른 피부선량 검증)

  • Yoon, Bo Reum;Park, Su Yeon;Park, Byoung Suk;Kim, Jong Sik;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.273-280
    • /
    • 2014
  • Purpose : To verify the skin dose in Tomotherapy-based radiation treatment according to the change in tumor locations, skin dose was measured by using Gafchromic EBT3 film and compared with the planned doses to find out the gap between them. Materials and Methods : In this study, to measure the skin dose, I'm RT Phantom(IBA Dosimetry, Germany) was utilized. After obtaining the 2.5mm CT images, tumor locations and skin dose measuring points were set by using Pinnacle(ver 9.2, Philips Medical System, USA). The tumor location was decided to be 5mm and 10mm away from surface of the phantom and center. Considering the attenuation of a Tomo-couch, we ensured a symmetric placement between the ceiling and floor directions of the phantom. The measuring point of skin doses was set to have 3mm and 5mm thickness from the surface. Measurement was done 3 times. By employing TomoHD(TomoHD treatment system, Tomotherapy Inc., Madison, Wisconsin, USA), we devised Tomotherapy plans, measured 3 times by inserting Gafchromic EBT3 film into the phantom and compared the measurement with the skin dose treatment plans. Results : The skin doses in the upper part of the phantom, when the tumor was located in the center, were found to be 7.53 cGy and 7.25 cGy in 5mm and 3mm respectively. If placed 5mm away from the skin in the ceiling direction, doses were 18.06 cGy and 16.89 cGy; if 10mm away, 20.37 cGy and 18.27 cGy, respectively. The skin doses in the lower part of the phantom, when the tumor was located in the center, recorded 8.82 cGy and 8.29 cGy in 5mm and 3mm, each; if located 5mm away from the lower part skin, 21.69 cGy and 19.78 cGy were respectively recorded; and if 10mm away, 20.48 cGy and 19.57 cGy were recorded. If the tumor was placed in the center, skin doses were found to increase by 3.2~17.1% whereas if the tumor is 5mm away from the ceiling part, the figure decreased to 2.8~9.0%. To the Tomo-couch direction, skin doses showed an average increase of 11% or over, compared to the planned treatment. Conclusion : This study found gaps between planned skin doses and actual doses in the Tomotherapy treatment planning. Especially to the Tomo-cocuh direction, skin doses were found to be larger than the planned doses. Thus, during the treatment of tumors near the Tomo-couch, doses will need to be more accurately calculated and more efforts to verify skin doses will be required as well.

CT and MRI image fusion reproducibility and dose assessment on Treatment planning system (치료계획시스템에서 전산화단층촬영과 자기공명영상의 영상융합 재현성 및 선량평가)

  • Ahn, Byeong Hyeok;Choi, Jae Hyeok;Hwang, Jae ung;Bak, Ji yeon;Lee, Du hyeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.33-41
    • /
    • 2017
  • Objectives: The aim of this study is to evaluate the reproducibility and usefulness of the images through the fusion of CT(Computed tomography) and MRI(Magnetic resonance imaging) using a self-manufactured phantom. We will also compare and analyze the target dose from acquired images. Materials and Methods: Using a self-manufactured phantom, CT images and MRI images are acquired by 1.5T and 3.0T of different magnetic fields. The reproducibility of the size and volume of the small holes present in the phantom is compared through the image from CT and 1.5T and 3.0T MRI, and dose changes are compared and analyzed on any target. Results: 13 small hole diameters were a maximum 31 mm and a minimum 27.54 mm in the CT scan and the were measured within an average of 29.28 mm 1 % compared to actual size. 1.5 T MRI images showed a maximum 31.65 mm and a minimum 24.3 mm, the average is 28.8 mm, which is within 1 %. 3.0T MRI images showed a maximum 30.2 mm and a minimum 27.92 mm, the average is 29.41 mm, which is within 1.3 %. The dose changes in the target were 95.9-102.1 % in CT images, 93.1-101.4 % in CT-1.5T MRI fusion images, and 96-102 % in CT-3.0T MRI fusion images. Conclusion: CT and MRI are applied with different algorithms for image acquisition. Also, since the organs of the human body have different densities, image distortion may occur during image acquisition. Because these inaccurate images description affects the volume range and dose of the target, accurate volume and location of the target can prevent unnecessary doses from being exposed and errors in treatment planning. Therefore, it should be applied to the treatment plan by taking advantage of the image display algorithm possessed by CT and MRI.

  • PDF

In vivo and in vitro Confirmation of Dose Homogeneity in Total Body Irradiation with Thermoluminescent Dosimeter (인체 및 인형 팬톰에서 전신방사선조사시 열형광선량계(TLD)를 이용한 선량분포 균일성 확인)

  • Chie Eui Kyu;Park Suk Won;Kang Wee-Saing;Kim Il Han
    • Radiation Oncology Journal
    • /
    • v.17 no.4
    • /
    • pp.321-328
    • /
    • 1999
  • Purpose : Total body irradiation (TBI) or whole body irradiation is used to acquire immune suppression, to treat malignant lymphoma and leukemia, and as an conditioning regimen for bone marrow transplantation. For these purposes, many methods were developed to obtain homogenous dose distribution. The objective of this study was to analyze and confirm the accuracy and the homogeneity of the treatment setup, the parallel opposed lateral technique, currently used in Seoul National University Hospital. Materials and Metheods : Surface dose data, measured with a thermoluminescent dosimeter, of 8 patients among 10 patients, who were given total body irradiation with the parallel opposed lateral technique between September 1996 to August 1998, at Seoul National University Hospital were analyzed. Surface doses were measured at the head, neck, axilla, thigh, and ankle level. Surface and midline doses were measured with similar set-up and technique in the Humanoid phantom. Results : Measured surface doses relative to prescribed dose for the head, neck, axilla, thight, and ankle leve were $91.3{\pm}7.8,{\;}98.3{\pm}7.5,{\;}95.1{\pm}6.3,{\;}98.3{\pm}5.5$, and $95.3{\pm} 6.3\%$, respectively. The midline doses of the head, neck, axilla, thigh, and ankle level estimated from the surface-to-midline ratios in the Humanoid Phantom were $103.4{\pm}9.0,{\;}107.8{\pm}10.5,{\;}91.1{\pm}6.1,{\pm} 93.8{\pm}4.5,{\;}and{\;}104.5{\pm}9.3\%$, respectively. Measured surface doses and estimated midline doses ranged from $-8.9\%$ to $+7.8\%$. Midline doses at the neck and the axilia level deviated more than $5\%$ from the prescribed doses. The difference of the estimated midline doses at the neck and the axilla level and the actual doses were attributed to the thickness differences between the Humanoid phantom and the patients. Conclusion Distribution of the midline doses as well as the suface doses were measured to be within $-8.7\~{\pm}7.8\%$ range. Actual dose distribution in the patient is expected to be better than the measured dose range mainly attributed to thickness difference between the patient and the Humanoid phantom.

  • PDF

Development of Video Image-Guided Setup (VIGS) System for Tomotherapy: Preliminary Study (단층치료용 비디오 영상기반 셋업 장치의 개발: 예비연구)

  • Kim, Jin Sung;Ju, Sang Gyu;Hong, Chae Seon;Jeong, Jaewon;Son, Kihong;Shin, Jung Suk;Shin, Eunheak;Ahn, Sung Hwan;Han, Youngyih;Choi, Doo Ho
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • At present, megavoltage computed tomography (MVCT) is the only method used to correct the position of tomotherapy patients. MVCT produces extra radiation, in addition to the radiation used for treatment, and repositioning also takes up much of the total treatment time. To address these issues, we suggest the use of a video image-guided setup (VIGS) system for correcting the position of tomotherapy patients. We developed an in-house program to correct the exact position of patients using two orthogonal images obtained from two video cameras installed at $90^{\circ}$ and fastened inside the tomotherapy gantry. The system is programmed to make automatic registration possible with the use of edge detection of the user-defined region of interest (ROI). A head-and-neck patient is then simulated using a humanoid phantom. After taking the computed tomography (CT) image, tomotherapy planning is performed. To mimic a clinical treatment course, we used an immobilization device to position the phantom on the tomotherapy couch and, using MVCT, corrected its position to match the one captured when the treatment was planned. Video images of the corrected position were used as reference images for the VIGS system. First, the position was repeatedly corrected 10 times using MVCT, and based on the saved reference video image, the patient position was then corrected 10 times using the VIGS method. Thereafter, the results of the two correction methods were compared. The results demonstrated that patient positioning using a video-imaging method ($41.7{\pm}11.2$ seconds) significantly reduces the overall time of the MVCT method ($420{\pm}6$ seconds) (p<0.05). However, there was no meaningful difference in accuracy between the two methods (x=0.11 mm, y=0.27 mm, z=0.58 mm, p>0.05). Because VIGS provides a more accurate result and reduces the required time, compared with the MVCT method, it is expected to manage the overall tomotherapy treatment process more efficiently.

A Pilot Study for the Remote Monitoring of IMRT Using a Head and Neck Phantom (원격 품질 보증 시스템을 사용한 세기변조 방사선치료의 예비 모니터링 결과)

  • Han, Young-Yih;Shin, Eun-Hyuk;Lim, Chun-Il;Kang, Se-Kwon;Park, Sung-Ho;Lah, Jeong-Eun;Suh, Tae-Suk;Yoon, Myong-Geun;Lee, Se-Byeong;Ju, Sang-Gyu;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.249-260
    • /
    • 2007
  • Purpose: In order to enhance the quality of IMRT as employed in Korea, we developed a remote monitoring system. The feasibility of the system was evaluated by conducting a pilot study. Materials and Methods: The remote monitoring system consisted of a head and neck phantom and a user manual. The phantom contains a target and three OARs (organs at risk) that can be detected on CT images. TLD capsules were inserted at the center of the target and at the OARs. Two film slits for GafchromicEBT film were located on the axial and saggital planes. The user manual contained an IMRT planning guide and instructions for IMRT planning and the delivery process. After the manual and phantom were sent to four institutions, IMRT was planed and delivered. Predicted doses were compared with measured doses. Dose distribution along the two straight lines that intersected at the center of the axial film was measured and compared with the profiles predicted by the plan. Results: The measurements at the target agreed with the predicted dose within a 3% deviation. Doses at the OARs that represented the thyroid glands showed larger deviations (minimum 3.3% and maximum 19.8%). The deviation at OARs that represented the spiral cord was $0.7{\sim}1.4%$. The percentage of dose distributions that showed more than a 5% of deviation on the lines was $7{\sim}27%$ and $7{\sim}14%$ along the horizontal and vertical lines, respectively. Conculsion: Remote monitoring of IMRT using the developed system was feasible. With remote monitoring, the deviation at the target is expected to be small while the deviation at the OARs can be very large. Therefore, a method that is able to investigate the cause of a large deviation needs to be developed. In addition, a more clinically relevant measure for the two-dimensional dose comparison and pass/fail criteria need to be further developed.