• Title/Summary/Keyword: 팬텀 실험

검색결과 303건 처리시간 0.021초

A System for Concurrent TMS-fMRI and Evaluation of Imaging Effects (동시 뇌경두개자기자극-기능자기공명영상 시행을 위한 홀더 제작과 시뮬레이션 및 영상 데이터 평가)

  • Kim, Jae-Chang;Kyeong, Sunghyon;Lee, Jong Doo;Park, Hae-Jeong
    • Investigative Magnetic Resonance Imaging
    • /
    • 제17권3호
    • /
    • pp.169-180
    • /
    • 2013
  • Purpose : The purpose of this study was to setup a concuurent transcranial magnetic stimulation (TMS)-functional MRI (fMRI) system for understanding causality of the functional brain network. Materials and Methods: We manufactured a TMS coil holder using nonmagnetic polyether ether ketone (PEEK). We simulated magnetic field distributions in the MR scanner according to TMS coil positions and angles. To minimize image distortions caused by TMS application, we controlled fMRI acquisition and TMS sequences to trigger TMS during inter-volume intervals. Results: Simulation showed that the magnetic field below the center of the coil was dramatically decreased with distance. Through the MR phantom study, we confirmed that TMS application around inter-volume acquisition time = 100 miliseconds reduced imaging distortion. Finally, the applicability of the concurrent TMS-fMRI was tested in preliminary studies with a healthy subject conducting a motor task within TMS-fMRI and passive motor movement induced by TMS in fMRI. Conclusion: In this study, we confirmed that the developed system allows use of TMS inside an fMRI system, which would contribute to the research of brain activation changes and causality in brain connectivity.

Reduction of Radiation Dose according to Geometric Parameters from Digital Coronary Angiography (디지털 심혈관조영장치의 기하학적 특성에 따른 선량 감소)

  • Kang, Yeonghan;Cho, PyongKon
    • Journal of the Korean Society of Radiology
    • /
    • 제7권4호
    • /
    • pp.277-284
    • /
    • 2013
  • This study aims to find out geometric parameters which practitioner adjustable to reduce dose in coronary angiography. We take fluoroscopy and cine exposure by use of phantom, and got dose use the dose-area product(DAP) meter of angiography device, than convert DAP to effective dose. As results, Cine exposure shows higher dose measurement about 6-7 times than fluoroscopy. Dose in frame per second(FPS) mode could be decrease down to 70%, as lower FPS. In view of X-ray tube angle, LAO $45^{\circ}$+Caudal $30^{\circ}$ shows highest dose measurement. More use of Collimator, lower dose measurement. Source-image intensifier distance(SID) get longer to 10cm, dose of each fluoroscopy and cine exposure increase up to 25-30%. Image magnification of field of view(FOV) could increase dose up to 1.21-2 times. Also table-image intensifier distance get longer to 10cm, dose increased 1.11-1.25 times. Practitioner can adjust several geometric parameters, as FPS mode, tube angle, Collimation, SID, table-image intensifier distance, FOV. And each factors can reduce radiation dose in coronary angiography.

Comparison of Linac-based VMAT Stereotatic Radiosurgery and Conventional Stereotatic Radiosurgery for Multiple Brain Lesions (Linac 기반 VMAT 정위적 수술 뇌 병변 연구와 기존의 정위적 방사선 수술 비교)

  • Jang, Eun-Sung;Chang, Bo-Seok
    • Journal of the Korean Society of Radiology
    • /
    • 제15권2호
    • /
    • pp.239-246
    • /
    • 2021
  • Portal Dosimetry was verified using EPID to secure the clinical application and reliability of the existing research dose evaluation. The dose distribution of Geant4 was compared with the measured value by 360° rotational irradiation with a 2.5 cm cone for stereotactic brain surgery. To confirm the dose distribution of patients with brain metastasis, the dose distribution investigated by inserting a Gafchromic EBT film into the parietal phantom and the dose distribution obtained from the parietal phantom using VMAT are compared and applied to actual patients. As a result of the analysis, it was confirmed that the accuracy of the beam center and the center of the couch coincide accurately with an error within 1mm as a result of QA through a pin ball. In addition, it was confirmed that the EBT3 film has excellent linearity in the range of 0 to 10 Gy according to various dose irradiation. In the same setting as the two cervical phantoms, we confirm that the implementation and simulation results calculations of dose calculations based on Geant4 using photon beams match the experimental data within the treatment planning volume (PTV). Therefore, volume modulated arc treatment (VMAT) 360° rotational irradiation was performed, and the result of iso-dose distribution analysis by rotational irradiation confirmed that it is appropriate to include a virtual tumor.

The Evaluation of Dose Reduction and Quality of Images According to 80 kVp of Scan Mode Change in Pediatric Chest CT (소아 흉부 CT 검사에서 관전압 80 kVp 조건으로 스캔 모드별 방사선량 감소와 화질 평가)

  • Kim, Gu;Kim, Gyeong-Rip;Lee, Eun-Sook;Cho, Hee-Jung;Sung, Soon-Ki;Moon, Seul-ji-a;Kwak, Jong-Hyeok
    • The Journal of the Korea Contents Association
    • /
    • 제19권8호
    • /
    • pp.284-292
    • /
    • 2019
  • To evaluate the usefulness of pediatric chest CT scans by comparing the dose, examination time, and image quality by applying Helical mode, High-pitch mode, and Volume Axial mode to minimize the radiation exposure and obtain high diagnostic value. Revolution (GE Healthcare, Wisconsin USA) was used to divide PBU-70 phantom into Helical mode, High-pitch mode, and Volume Axial mode. After acquiring images, ROI is set for each image, heart, bone, lung, and back-ground air, and the average value is obtained by measuring CT number (HU) and noise (SD). SNR and CNR were measured and compared with DLP values provided directly by the equipment. Determining statistical significance Statistical analysis was performed using ONE-WAY-ANAOVA using SPSS 21.0. In this experiment, it was possible to inspect at a short time without deterioration of image quality with the lowest dose when using volume axial mode. Although the detector coverage of 16 cm is limited to all pediatric chest CT scans, it is recommended to be actively used in pediatric patients, and further study is needed to apply other test sites in volume axial mode.

Analysis of the Relationships according to the Frame (f/s) Change of Cine Imaging in Coronary Angiographic System: With Focus on FOV Enlargement and Live Zoom (심장 혈관 조영장치에서의 프레임 레이트(f/s) 변화에 따른 상관 관계 분석 : FOV 확대와 Live Zoom을 중점으로)

  • Kim, Won Hyo;Song, Jong-Nam;Han, Jae-Bok
    • Journal of the Korean Society of Radiology
    • /
    • 제12권7호
    • /
    • pp.845-852
    • /
    • 2018
  • This study aimed to investigate the difference of X-ray exposure by comparing and analyzing absorbed dose according to changes in the number of frames in coronary angiography, also depending whether the zoom mode is FOV enlargement or Zoom Live. Moreover, for appropriate frame selection measures for examination, including the effect of frame change on the image quality, were sought by measuring the noise strength expressed by the standard deviation (SD), the signal to noise ratio (SNR) and contrast to noise ratio (CNR). The study was conducted with an anthropomorphic phantom on an angio-system. The linear relationship between the frame rate and the radiation dose was evident. On the contrary, the indices of image quality (SD, SNR, and CNR) were almost constant irrespective of the number of frames. The difference depending on the zoom mode was not statistically significant for DAP, air kerma, and SD (p > 0.05). However, SNR and CNR were statistically different between FOV enlargement and Zoom Live. In conclusion, since the image quality was not degraded significantly with the decreasing frame rate from 30, 15, to 7.5 f/s and the radiation dose evidently decreases in almost exactly linear proportion to the decreasing frame rate, the number of frames per second needs to be maintained as low as reasonably achievable. As for the dependence on the zooming mode, the Live Zoom mode showed statistically significant improvement in the image quality indices of SNR and CNR and it justifies active use of the Live Zoom mode which enables real-time image enlargment without additional radiation dose.

Usefulness Evaluation of Algorithm Conversion Method for Dose Reduction in Brain CT Examination (두부 CT 검사에서 선량감소를 위한 알고리즘 변환방법의 유용성 평가)

  • Kim, Hyeon ju
    • Journal of the Korean Society of Radiology
    • /
    • 제13권3호
    • /
    • pp.481-487
    • /
    • 2019
  • Based on the scan conditions and algorithms that are generally applied during examinations during head CT examinations, the results of dose reduction through the application of algorithm changes were investigated through experiments. As a result, the dose reduction effect was more meaningful for the change of perfusion than for the tube voltage, and the quality evaluation using the brain phantom was relatively less reduced when the dose was reduced after the application of the Bone algorithm, especially for the application of the Bone algorithm, and the deviation of the mean CT number or Pixel value was measured relatively significantly. In other words, the conditions under which dose was reduced and quality was maintained to reduce the patient's exposure dose and obtain images of the same quality were obtained with the application of the Smooth algorithm and the resulting values of 120 kVp, 160 mA. At this point, doses were reduced by about 28%, and the mean CT number or Pixel value was also measured with relatively little error. If the results are applied to patients who visit the hospital for examination or follow-up after applying various algorithms and follow up scan conditions, the results are considered to be very useful in reducing patient exposure dose.

3D Fusion Imaging based on Spectral Computed Tomography Using K-edge Images (K-각 영상을 이용한 스펙트럼 전산화단층촬영 기반 3차원 융합진단영상화에 관한 연구)

  • Kim, Burnyoung;Lee, Seungwan;Yim, Dobin
    • Journal of the Korean Society of Radiology
    • /
    • 제13권4호
    • /
    • pp.523-530
    • /
    • 2019
  • The purpose of this study was to obtain the K-edge images using a spectral CT system based on a photon-counting detector and implement the 3D fusion imaging using the conventional and spectral CT images. Also, we evaluated the clinical feasibility of the 3D fusion images though the quantitative analysis of image quality. A spectral CT system based on a CdTe photon-counting detector was used to obtain K-edge images. A pork phantom was manufactured with the six tubes including diluted iodine and gadolinium solutions. The K-edge images were obtained by the low-energy thresholds of 35 and 52 keV for iodine and gadolinium imaging with the X-ray spectrum, which was generated at a tube voltage of 100 kVp with a tube current of $500{\mu}A$. We implemented 3D fusion imaging by combining the iodine and gadolinium K-edge images with the conventional CT images. The results showed that the CNRs of the 3D fusion images were 6.76-14.9 times higher than those of the conventional CT images. Also, the 3D fusion images was able to provide the maps of target materials. Therefore, the technique proposed in this study can improve the quality of CT images and the diagnostic efficiency through the additional information of target materials.

Signal Change of Normal Saline by Oxygen Injection in FLAIR Image (산소주입에 의한 FLAIR 영상에서 생리식염수의 신호 변화)

  • Shin, Woon-Jae
    • Journal of the Korean Society of Radiology
    • /
    • 제13권1호
    • /
    • pp.55-63
    • /
    • 2019
  • It was reported that there were some cases in which signal was not inhibited but high signal appeared in cerebrospinal fluid on FLAIR(fluid attenuated inversion recovery) of MRI(Magnetic Resonance Imaging) in case a person inhales high-concentration oxygen. This study was to prepare basic database. We produced a phantom fixed with agar gel and by using it, obtained the images of the signals of normal saline into which oxygen was injected and normal saline diluted with contrast media by changing the TI(Inversion Time) of FLAIR technique and analyzed them. In the result of FLAIR technique of MRI using Philips Achieva MR 3.0T in Busan P Hospital, the SNR(Signal to Noise Ratio) of normal saline into which oxygen was injected was higher than the SNR of normal saline into which oxygen was not injected. However, it was not higher than the SNR of normal saline diluted with contrast media. In the TI 1,800ms, we could obtain the images which do not have the rise of the signal due to oxygen. In the CNR(Contrast to Noise Ratio) of normal saline into which oxygen was injected and normal saline diluted with contrast media as well, it was higher in the TI 1,800ms than in the TI 2,800ms that is mainly used clinically. It is thought that the result of this study could be basic database for studies on change of signal of cerebrospinal fluid as a result of injection of oxygen in FLAIR technique of MRI.

Evaluation of Scattered Rays of Jelly Type Shielding Body by L-spine AP using X-ray (L-Spine X-선 촬영에서의 Jelly type 차폐체의 산란선 차폐평가)

  • Jang, Hui-Min;Kim, Do-Gwon;Kim, Hyeong-Bin;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • 제14권7호
    • /
    • pp.907-913
    • /
    • 2020
  • There have been continuous controversies on medical X-ray protection and numerous researchers have been trying to prevent unnecessary exposure to radiation. As X-ray passes through the patient and obtains an image, it creates scattered ray due to interactions such as photoelectric effect and Compton scattering with the subject. As a result, both medical radiation staff and patient are exposed to unnecessary radiation on areas other than the target area. In response, this study will be assuming a body of a female, radiating X-ray on the phantom under the conditions of lumbar spine AP test, and measuring scattered ray around breasts and thyroid glands. Then, The experiment results were as follows. After application of non-shielding material, the average of scattered ray was 0.88 mR in thyroid measurement, 3.34 mR, Lt Axillary 3.54 mR, and Rt Axillary 3.03 mR in mamonary measurement but, After application of shielding material, the average of scattered ray was 0.16 mR in thyroid measurement, 0.60 mR, Lt Axillary 0.64 mR, and Rt Axillary 0.54 mR in mamonary measurement showing average scattered ray protection effect of about 82%. This study suggested the manufacturing method of a Jelly-type shielding material, identified the possibilities of researches on mixing various substances with radiology field, and verified the usability of the Jelly-type shielding material as a substitute for existing protection tools.

Evaluation of Effect of Decrease in Metallic Artifacts using the Synthetic MR Technique (Synthetic MR 기법을 이용한 금속 인공물 감소 효과 평가)

  • Soon-Yong, Kwon;Nam-Yong, Ahn;Jeong-Eun, Oh;Seong-Ho, Kim
    • Journal of the Korean Society of Radiology
    • /
    • 제16권7호
    • /
    • pp.835-842
    • /
    • 2022
  • This study is aimed to evaluate the effects of a synthetic MR technique in reducing metal artifacts. In the experiment, the in-plane and through-plane images were acquired by applying a synthetic MR technique and a high-speed spin echo technique to a phantom manufactured with screw for spinal surgery. The area of the metal artifact was compared. The metal artifacts were measured by dividing the signal-loss and the signal pile-up areas, and the area of the final artifact was calculated through the sum of the two. As a result, the metal artifacts were relatively reduced when the synthetic MR techniques were applied to both in-plane and through-plane. Comparing by sequence, the in-plane T1 images decreased by 23.45%, T2 images by 20.85%, PD images by 19.67%, and FLAIR images by 22.12%. Also, in the case of the through-plane, the T1 image decreased by 62.95%, the T2 image decreased by 73.93%, the PD image decreased by 74.68%, and the FLAIR image decreased by 66.43%. The cause of this result is that when the synthetic MR technique is applied, the distortion is due to the signal pile-up and does not occur and the size of the entire metal artifact is reduced. Therefore, synthetic MR technique can very effectively reduce metal artifacts, which can help to increase the diagnostic value of images.