• Title/Summary/Keyword: 팬텀 실험

Search Result 302, Processing Time 0.022 seconds

The Implementation of TMM test phantom for evaluating the thermal performance in High Intensity Focused Ultrasound system (강력 집속 초음파 시스템의 열적 성능 평가를 위한 팬텀 개발에 관한 기초연구)

  • Yu, Woo-Jin;Noh, Si-Cheol;Park, Moon-Kyu;Min, Hae-Ki;Park, Jae-Hyun;Choi, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.484-485
    • /
    • 2008
  • 초음파는 의학적 진단 및 치료의 목적으로 널리 사용되어 왔다. 일반적으로, 초음파 조사의 생물학적 무해성은 많은 연구를 통하여 보고되었으나, 최근 초음파 집속을 통한 강력 초음파의 사용에 대한 열적 안전성 평가가 중요한 요소로 대두되고 있다. 이에 본 연구에서는 강력 집속 초음파의 전달 에너지와 열적 분포를 측정하여 안전성 평가에 활용 가능한 초음파 열분포 팬텀을 제안하였다. 온도 분포 측정용 팬텀은 초음파 조직유사 팬텀 재료인 한천을 이용하였으며, 음향학적 특성의 유사성을 평가하였다. 온도 효과를 측정하기 위하여 $3{\times}3$의 형태로 온도 센서를 팬텀 내부에 배열하여 초음파 조사에 따른 온도 분포를 측정하였고 온도 측정을 위한 시스템을 개발하여, 초음파 가열 실험을 수행하였다. 본 연구에서 제안된 초음파 온도 분포 측정용 팬텀의 유용성을 확인하였으며, 온도 분포용 팬텀을 통한 강력 집속 초음파 장비의 열적 성능 평가에 적용 될 수 있을 것으로 사료되었다.

  • PDF

Analysis of Acquisition Parameters That Caused Artifacts in Four-dimensional (4D) CT Images of Targets Undergoing Regular Motion (표적이 규칙적으로 움직일 때 생기는 4DCT 영상의 모션 아티팩트(Motion Artifact) 관련된 원인분석)

  • Sheen, Heesoon;Han, Youngyih;Shin, Eunhyuk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.243-252
    • /
    • 2013
  • The aim of this study was to clarify the impacts of acquisition parameters on artifacts in four-dimensional computed tomography (4D CT) images, such as the partial volume effect (PVE), partial projection effect (PPE), and mis-matching of initial motion phases between adjacent beds (MMimph) in cine mode scanning. A thoracic phantom and two cylindrical phantoms (2 cm diameter and heights of 0.5 cm for No.1 and 10 cm for No.2) were scanned using 4D CT. For the thoracic phantom, acquisition was started automatically in the first scan with 5 sec and 8 sec of gantry rotation, thereby allowing a different phase at the initial projection of each bed. In the second scan, the initial projection at each bed was manually synchronized with the inhalation phase to minimize the MMimph. The third scan was intentionally un-synchronized with the inhalation phase. In the cylindrical phantom scan, one bed (2 cm) and three beds (6 cm) were used for 2 and 6 sec motion periods. Measured target volume to true volume ratios (MsTrueV) were computed. The relationships among MMimph, MsTrueV, and velocity were investigated. In the thoracic phantom, shorter gantry rotation provided more precise volume and was highly correlated with velocity when MMimph was minimal. MMimph reduced the correlation. For moving cylinder No. 1, MsTrueV was correlated with velocity, but the larger MMimph for 2 sec of motion removed the correlation. The volume of No. 2 was similar to the static volume due to the small PVE, PPE, and MMimph. Smaller target velocity and faster gantry rotation resulted in a more accurate volume description. The MMimph was the main parameter weakening the correlation between MsTrueV and velocity. Without reducing the MMimph, controlling target velocity and gantry rotation will not guarantee accurate image presentation given current 4D CT technology.

Application of IAEA TRS-398 Protocol to Gamma Knife Model C (감마나이프 C모델에 대한 IAEA TRS-398 프로토콜의 적용)

  • Chung, Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.194-201
    • /
    • 2007
  • Although Gamma Knife irradiates much more radiation in a single session than conventional radiotherapy, there were only a few studies to measure absolute dose of a Gamma Knife. Especially, there is no report of application of International Atomic Energy Agency (IAEA) TRS-398 which requires to use a water phantom in radiation measurement to Gamma Knife. In this article, the authors reported results of the experiments to measure the absorbed dose to water of a Gamma Knife Model C using the IAEA TRS-398 protocol. The absorbed dose to water of a Gamma Knife model C was measured using a water phantom under conditions as close as possible to the IAEA TRS-398 protocol. The obtained results were compared with values measured using the plastic phantom provided by the Gamma Knife manufacturer. Two Capintec PR-05P mini-chambers and a PTW UNIDOS electrometer were used in measurements. The absorbed dose to water of a Gamma Knife model C inside the water phantom was 1.38% larger than that of the plastic phantom. The current protocol provided by the manufacturer has an intrinsic error stems from the fact that a plastic phantom is used instead of a water phantom. In conclusion, it is not possible to fully apply IAEA TRS-398 to measurement of absorbed dose of a Gamma Knife. Instead, it can be a practical choice to build a new protocol for Gamma Knife or to provide a conversion factor from a water phantom to the plastic phantom. The conversion factor can be obtained in one or two standard laboratories.

  • PDF

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee, Suk;Lee, Sang-Hoon;Shin, Dong-Ho;Yang, Dae-Sik;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.122-125
    • /
    • 2004
  • In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration gating techniques that can adjust patients' beds by using reversed values of the data obtained. The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range 3 cm ${\sim}$3 m), host computer (RS232C) and stepping motor (torque 2.3Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place in order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data(three dimensional data form with distance of 2cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. The result of analyzing the acquisition-correction delay time for the three types of data values and about each value separately shows that the data values coincided with one another within 1% and that the acquisition-correction delay time was obtained real-time (2.34 ${\times}$ 10$^{-4}$sec). This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultra sonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

  • PDF

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee Suk;Lee Sang Hoon;Shin Dongho;Yang Dae Sik;Choi Myung Sun;Kim Chul Yong
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.316-324
    • /
    • 2004
  • Purpose : In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration sating techniques that can adjust patients' beds by using reversed values of the data obtained. Materials and Methods : The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range $3\~3$ m), host computer (RS232C) and stepping motor (torque 2.3 Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place In order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data (three dimensional data form with distance of 2 cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. Results : The result of analyzing the acquisition-correction delay time the three types of data values and about each value separately shows that the data values coincided with one another within $1\%$ and that the acquisition-correction delay time was obtained real-time $(2.34{\times}10^{-4}sec)$. Conclusion : This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultrasonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

Evaluation of Setup Usefulness of CBCT using Rando Phantom (인체 팬텀(Rando Phantom)을 이용한 CBCT의 Setup 유용성 평가)

  • Jang, Eun-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.7
    • /
    • pp.234-238
    • /
    • 2011
  • This paper will evaluate the usefulness of 3D target of CBCT by comparing human body's posture and position when simulated treatment is being carried out as well as human phantom posture and position using CBCT which is applying OBI. From the Rando Phantom which is located in the datum point moved in parallel and rotationary direction using CBCT. Then the mean and standard deviation difference on images location difference that are acquired were compared with real the Rando Phantom' moved distance. To make a plan of simulated treatment with the same procedure of real radiation therapy, we are going to setup the Rando Phantom. With an assumption that the position is set in accurate place, we measured the setup errors accroding to the change of the translation and rotation. Tests are repeated 10 times to get the standard deviation of the error values. The variability in couch shift after positioning equivalent to average residual error showed lateral $0.2{\pm}0.2$mm, longitudinal $0.4{\pm}0.3$mm, vertical $-0.4{\pm}0.1$mm. The average rotation erroes target localization after simulated $0.4{\pm}0.2$ mm, $0.3{\pm}0.3$ mm, and $0.3{\pm}0.4$ mm. The detection error by rotation is $0{\sim}0.6^{\circ}$ CBCT 3D/3D matching using the Rando Phantom minimized the errors by realizing accurate matching during simulated treatment and patient caring.

Study of Appropriate Increment during VRT Rendering before Musculoskeletal Surgery (근골격계 수술전 VRT Rendering시 적절한 increment에 대한 연구)

  • Gang, Heon-Hyo;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.675-681
    • /
    • 2019
  • The purpose of this study was to investigate the effect of increasing the amount of 3D volume imaging on the hand, knee, and foot human phantom in CT, After analyzing the data, three - dimensional volumetric images were implemented using MMWP program to evaluate reproducibility. First, the data amount of three human phantoms according to each increment was analyzed. Secondly, the reproducibility evaluation and the measured length were compared. As a result of analyzing the amount of image data for each phantom according to the increment, it was confirmed that the amount of data is reduced to about 1/10 when the increment is set to 1.0 mm as compared with the case where the increment is set to 0.1 mm. In the evaluation of the feasibility, gap was generated from 0.7mm for hand phantom, 0.6mm for knee phantom and foot phantom, and it was confirmed that even when the actual phantom and actual length were compared, the length was much different and the implementation was lowered. As the increment is closer to 1.0mm, the number of images is small and the 3D implementation time is small. Therefore, it is best to determine the increase before the gap of the image is generated and to apply the Increment for preoperative diagnosis. We hope that this study will be an indicator of the accurate increment setting when implementing 3D image through VRT Rendering after CT scan.

Antenna Efficiency Variation by the Influence of Human Body (인체의 영향에 의한 안테나 효율의 변화)

  • Lee, Yong-Joo;Han, Jun-Hee;Yang, Woon-Geun
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.185-195
    • /
    • 2008
  • In this paper, PIFA(Planar Inverted F Antenna) which operates in PCS(Personal Communication System) band is designed and characteristics are investigated. Designed PIFA was installed in three types of handsets, folder, bar, slide, and the performance was evaluated. Head and hand phantom were added to make the most similar environment to real condition of mobile phone use, and influences on antenna performance were analyzed. The simulation results confirm radiation patterns are greatly changed and antenna efficiency is decreased by the effect of human body. Performance variation of the mobile handset antenna was observed as changing the angle between mobile handset and head phantom from $0^{\circ}$ to $2^{\circ},\;4^{\circ}$ to confirm the variation caused by the relative position of mobile handset and head phantom. Directivity was decreased gradually as the antenna goes away from head phantom, and showed the trend of increasing efficiency. But in the case of bar type, where the position of antenna is relatively close to head phantom, that trend didn't show. It was confirmed that the shape of handset has a great effect on the performance.

  • PDF

ANSI 13.32 말단부 팬템에 의한 열형광말단선량계의 방향의존성 연구

  • 김종수;윤석철;윤여창
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.889-894
    • /
    • 1995
  • 본 연구에서는 ANSI N13.32(1995)에서 제시한 손가락, 손목/발목 기준 팬텀(1)을 설계 제작하여 Teledye사의 말단선량계(finger와 wrist dosimeter)에 대한 방향의존성 실험을 수행하였다. 방사선원으로는 PTB 2차 베타표준선원 $^{204}$Tl(0.24 MeV), $^{90}$ sr/Y(0.8 MeV) 그리고 $^{l37}$ Cs(0.66 MeV) 표준 감마선원을 사용하였으며, 말단선량계로는 LiF Teflon(D-LiF-7-0.13)을 사용하였다. 90$^{\circ}$ 에서 $10^{\circ}$ 까지 20$^{\circ}$ 씩 수직과 수평으로 팬텀을 회전하여 정상각과 비정상각에 대한 상대응답을 제시하였다. 실험결과 90$^{\circ}$에서 모든 선량계는 잘 일치하였다. $^{90}$ Sr/Y은 50$^{\circ}$ 정도에서 다소 방향의존성이 적은 결과를 보였으며, $^{204}$ TI는 20$^{\circ}$에서 최소 13% 정도의 심한 방향의존성이 나타났다. 또한 $^{137}$Cs은 $10^{\circ}$에서도 최대 10.6% 정도의 적은 방향의존성을 나타냈다. 본 실험의 결과로부터 말단선량계는 저에너지와 낮은 투과 방사선[2]에서 심하게 방향의존성이 나타남을 알 수 있었다.

  • PDF

Measurement of induced current in human body under 60 Hz magnetic field (60 Hz 자기장 하의 생체 유도전류 측정)

  • Kim, Eung-Sik;Myung, Sung-Ho;Min, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.78-79
    • /
    • 2005
  • 60 [Hz] 전자기장의 생체 영향은 오랜 연구가 있었지만 아직도 논란이 많은 분야이다. 본 연구에서는 인체 팬텀 모델을 사용하여 1-3[G]자계인가 시 유도 전류를 측정하였다. 또한 2차윈 다매질장의 실험모델을 제작하여 유도전류 측정하고 이를 해석해와 비교를 통해 정확도를 검토 하였다. 또한 인체 단면을 2차원 임피던스법을 이용하여 계산한 결과와 이의 팬텀 모델 제자 후 전류를 측정한 간과 비하였다. 마지막으로 인체를 실물에 가깝게 하기위해 3차원 다매질장의 모델로 모의하여 장기, 폐, 간, 실장, 뇌 등의 구성 요소에 각각의 전도도를 부여한 인체 팬텀 모델을 제작해 유도 전류를 측정하였다.

  • PDF