• Title/Summary/Keyword: 패턴 확장

Search Result 709, Processing Time 0.025 seconds

Influence of Large-Scale Environments on Tropical Cyclone Activity over the Western North Pacific: A Case Study for 2009 (대규모 순환장이 북서태평양 태풍활동에 끼치는 영향: 2009년의 예)

  • Choi, Woosuk;Ho, Chang-Hoi;Kim, Hyeong-Seog
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.133-145
    • /
    • 2010
  • This study examined the characteristics of tropical cyclone(TC) activity over the western North Pacific(WNP) in 2009. Twenty-two TCs formed in 2009, which is slightly below normal(1979~2009 average: 25.8) and most of these occurred during the months of July to October. Most TCs in 2009 was formed over the northern Philippines and the eastern part of the WNP and they moved towards the South China Sea and the east of Japan, resulting in less TC affecting the East China Sea and Korea. The TC activity in 2009 is modulated by the large-scale circulations induced by the El $Ni{\tilde{n}}o$ and vigorous convection activity over the WNP. As the general characteristics of El $Ni{\tilde{n}}o$ year, the difference in sea surface temperature between the central Pacific and the eastern Pacific causes an anomalous westerly winds, expanding the WNP monsoon trough farther eastward. Accordingly, TC formation has relatively increased in the east part of the WNP. Active convection activities over the subtropical western Pacific excite a Rossby wave propagating from the South China Sea to mid-latitudes, resulting in an anomalous easterly steering flow in the South China, anomalous northwesterly over the East China Sea and Korea, and anomalous southwesterly over the east of Japan. Summing up, the TCs cannot enter the East China Sea and Korean region and instead they move towards the South China Sea or south-east of Japan. There were no effects of TCs in Korea in 2009. It is anticipated that this study which analyzed unusual TC activity and large-scale circulations in 2009 would help the predictability of TC effects to increase according to climate change in the East Asia.

On the Problem of Virtue in Confucian and Neoconfucian Philosophy (유학 및 신유학 철학에서의 덕의 문제)

  • Gabriel, Werner
    • (The)Study of the Eastern Classic
    • /
    • no.50
    • /
    • pp.89-120
    • /
    • 2013
  • The concept of virtue seems to be one of the rare cases where the European and the Chinese traditions coincide. The meaning of the Latin word virtus and of Greek $aret{\acute{e}}$ seems to be similar to the Chinese $d{\acute{e}}$德. Most striking in virtue is that it is a capacity for self-realisation through action which is unique to man. On the other hand, there is something physical about it. It is the strength to do something. This strength overcomes the resistance of what is naturally given, it transforms the world, turns the natural world into a human one. In the Chinese tradition, $d{\acute{e}}$ 德, i.e. virtue, is therefore always connected with $da{\grave{o}}$ 道, the totality of natural forces. In the Chinese tradition, as opposed to the European one, virtue is itself considered to be a natural force that is present in man. This force sustains man's connectedness, unity and harmony with the surrounding world. Things exist through the unity of principle理 and ether氣. But the knowledge of this unity is due to principle. Moral and legal norms are shifted totally to the sphere of principle. Therefore their have found the final dissolution from a heroic models. Above all the classical Confucians, but also the other schools, would reply to this that there is nothing more precise than a concrete successful action. Its result fits the world perfectly. The difference is due to the differing interest of ethical thought. In the case of the Confucians the path is more direct. The actor establishes a precise pattern for other actions. Education therefore lies in detailed knowledge about forms of behaviour, not so much in conceptual differentiation. It is quite possible that generalisation may be a methodical prerequisite for success in this endeavour. That problem, too, is discussed. But the success of conceptualisation lies in the successful performance of individual actions, not in shaping actions in accordance with normative concepts.

Rare Earth Elements (REE)-bearing Coal Deposits: Potential of Coal Beds as an Unconventional REE Source (함희토류 탄층: 비전통적 희토류 광체로서의 가능성에 대한 고찰)

  • Choi, Woohyun;Park, Changyun
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.241-259
    • /
    • 2022
  • In general, the REE were produced by mining conventional deposits, such as the carbonatite or the clay-hosted REE deposits. However, because of the recent demand increase for REE in modern industries, unconventional REE deposits emerged as a necessary research topic. Among the unconventional REE recovery methods, the REE-bearing coal deposits are recently receiving attentions. R-types generally have detrital originations from the bauxite deposits, and show LREE enriched REE patterns. Tuffaceous-types are formed by syngenetic volcanic activities and following input of volcanic ash into the basin. This type shows specific occurrence of the detrital volcanic ash-driven minerals and the authigenic phosphorous minerals focused at narrow horizon between coal seams and tonstein layers. REE patterns of tuffaceous-types show flat shape in general. Hydrothermal-types can be formed by epigenetic inflow of REE originated from granitic intrusions. Occurrence of the authigenic halogen-bearing phosphorous minerals and the water-bearing minerals are the specific characteristics of this type. They generally show HREE enriched REE patterns. Each type of REE-bearing coal deposits may occur by independent genesis, but most of REE-bearing coal deposits with high REE concentrations have multiple genesis. For the case of the US, the rare earth oxides (REO) with high purity has been produced from REE-bearing coals and their byproducts in pilot plants from 2018. Their goal is to supply about 7% of national REE demand. For the coal deposits in Korea, lignite layers found in Gyungju-Yeongil coal fields shows coexistence of tuff layers and coal seams. They are also based in Tertiary basins, and low affection from compaction and coalification might resulted into high-REE tuffaceous-type coal deposits. Thus, detailed geologic researches and explorations for domestic coal deposits are required.

Review of the Weather Hazard Research: Focused on Typhoon, Heavy Rain, Drought, Heat Wave, Cold Surge, Heavy Snow, and Strong Gust (위험기상 분야의 지난 연구를 뒤돌아보며: 태풍, 집중호우, 가뭄, 폭염, 한파, 강설, 강풍을 중심으로)

  • Chang-Hoi Ho;Byung-Gon Kim;Baek-Min Kim;Doo-Sun R. Park;Chang-Kyun Park;Seok-Woo Son;Jee-Hoon Jeong;Dong-Hyun Cha
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.223-246
    • /
    • 2023
  • This paper summarized the research papers on weather extremes that occurred in the Republic of Korea, which were published in the domestic and foreign journals during 1963~2022. Weather extreme is defined as a weather phenomenon that causes serious casualty and property loss; here, it includes typhoon, heavy rain, drought, heat wave, cold surge, heavy snow, and strong gust. Based on the 2011~2020 statistics in Korea, above 80% of property loss due to all natural disasters were caused by typhoons and heavy rainfalls. However, the impact of the other weather extremes can be underestimated rather than we have actually experienced; the property loss caused by the other extremes is hard to be quantitatively counted. Particularly, as global warming becomes serious, the influence of drought and heat wave has been increasing. The damages caused by cold surges, heavy snow, and strong gust occurred over relatively local areas on short-term time scales compared to other weather hazards. In particularly, strong gust accompanied with drought may result in severe forest fires over mountainous regions. We hope that the present review paper may remind us of the importance of weather extremes that directly affect our lives.

A Generalized Adaptive Deep Latent Factor Recommendation Model (일반화 적응 심층 잠재요인 추천모형)

  • Kim, Jeongha;Lee, Jipyeong;Jang, Seonghyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.249-263
    • /
    • 2023
  • Collaborative Filtering, a representative recommendation system methodology, consists of two approaches: neighbor methods and latent factor models. Among these, the latent factor model using matrix factorization decomposes the user-item interaction matrix into two lower-dimensional rectangular matrices, predicting the item's rating through the product of these matrices. Due to the factor vectors inferred from rating patterns capturing user and item characteristics, this method is superior in scalability, accuracy, and flexibility compared to neighbor-based methods. However, it has a fundamental drawback: the need to reflect the diversity of preferences of different individuals for items with no ratings. This limitation leads to repetitive and inaccurate recommendations. The Adaptive Deep Latent Factor Model (ADLFM) was developed to address this issue. This model adaptively learns the preferences for each item by using the item description, which provides a detailed summary and explanation of the item. ADLFM takes in item description as input, calculates latent vectors of the user and item, and presents a method that can reflect personal diversity using an attention score. However, due to the requirement of a dataset that includes item descriptions, the domain that can apply ADLFM is limited, resulting in generalization limitations. This study proposes a Generalized Adaptive Deep Latent Factor Recommendation Model, G-ADLFRM, to improve the limitations of ADLFM. Firstly, we use item ID, commonly used in recommendation systems, as input instead of the item description. Additionally, we apply improved deep learning model structures such as Self-Attention, Multi-head Attention, and Multi-Conv1D. We conducted experiments on various datasets with input and model structure changes. The results showed that when only the input was changed, MAE increased slightly compared to ADLFM due to accompanying information loss, resulting in decreased recommendation performance. However, the average learning speed per epoch significantly improved as the amount of information to be processed decreased. When both the input and the model structure were changed, the best-performing Multi-Conv1d structure showed similar performance to ADLFM, sufficiently counteracting the information loss caused by the input change. We conclude that G-ADLFRM is a new, lightweight, and generalizable model that maintains the performance of the existing ADLFM while enabling fast learning and inference.

Analysis of the impact of mathematics education research using explainable AI (설명가능한 인공지능을 활용한 수학교육 연구의 영향력 분석)

  • Oh, Se Jun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.435-455
    • /
    • 2023
  • This study primarily focused on the development of an Explainable Artificial Intelligence (XAI) model to discern and analyze papers with significant impact in the field of mathematics education. To achieve this, meta-information from 29 domestic and international mathematics education journals was utilized to construct a comprehensive academic research network in mathematics education. This academic network was built by integrating five sub-networks: 'paper and its citation network', 'paper and author network', 'paper and journal network', 'co-authorship network', and 'author and affiliation network'. The Random Forest machine learning model was employed to evaluate the impact of individual papers within the mathematics education research network. The SHAP, an XAI model, was used to analyze the reasons behind the AI's assessment of impactful papers. Key features identified for determining impactful papers in the field of mathematics education through the XAI included 'paper network PageRank', 'changes in citations per paper', 'total citations', 'changes in the author's h-index', and 'citations per paper of the journal'. It became evident that papers, authors, and journals play significant roles when evaluating individual papers. When analyzing and comparing domestic and international mathematics education research, variations in these discernment patterns were observed. Notably, the significance of 'co-authorship network PageRank' was emphasized in domestic mathematics education research. The XAI model proposed in this study serves as a tool for determining the impact of papers using AI, providing researchers with strategic direction when writing papers. For instance, expanding the paper network, presenting at academic conferences, and activating the author network through co-authorship were identified as major elements enhancing the impact of a paper. Based on these findings, researchers can have a clear understanding of how their work is perceived and evaluated in academia and identify the key factors influencing these evaluations. This study offers a novel approach to evaluating the impact of mathematics education papers using an explainable AI model, traditionally a process that consumed significant time and resources. This approach not only presents a new paradigm that can be applied to evaluations in various academic fields beyond mathematics education but also is expected to substantially enhance the efficiency and effectiveness of research activities.

Exploring Mask Appeal: Vertical vs. Horizontal Fold Flat Masks Using Eye-Tracking (마스크 매력 탐구: 아이트래킹을 활용한 수직 접이형 대 수평 접이형 마스크 비교 분석)

  • Junsik Lee;Nan-Hee Jeong;Ji-Chan Yun;Do-Hyung Park;Se-Bum Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.271-286
    • /
    • 2023
  • The global COVID-19 pandemic has transformed face masks from situational accessories to indispensable items in daily life, prompting a shift in public perception and behavior. While the relaxation of mandatory mask-wearing regulations is underway, a significant number of individuals continue to embrace face masks, turning them into a form of personal expression and identity. This phenomenon has given rise to the Fashion Mask industry, characterized by unique designs and colors, experiencing rapid growth in the market. However, existing research on masks is predominantly focused on their efficacy in preventing infection or exploring attitudes during the pandemic, leaving a gap in understanding consumer preferences for mask design. We address this gap by investigating consumer perceptions and preferences for two prevalent mask designs-horizontal fold flat masks and vertical fold flat masks. Through a comprehensive approach involving surveys and eye-tracking experiments, we aim to unravel the subtle differences in how consumers perceive these designs. Our research questions focus on determining which design is more appealing and exploring the reasons behind any observed differences. The study's findings reveal a clear preference for vertical fold flat masks, which are not only preferred but also perceived as unique, sophisticated, three-dimensional, and lively. The eye-tracking analysis provides insights into the visual attention patterns associated with mask designs, highlighting the pivotal role of the fold line in influencing these patterns. This research contributes to the evolving understanding of masks as a fashion statement and provides valuable insights for manufacturers and marketers in the Fashion Mask industry. The results have implications beyond the pandemic, emphasizing the importance of design elements in sustaining consumer interest in face masks.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.