• 제목/요약/키워드: 패턴 파일

검색결과 392건 처리시간 0.018초

나선형 토모테라피 방사선치료의 환자별 품질관리를 위한 라디오크로믹 필름 및 Dosimetry CheckTM의 성능평가 (Performance Evaluation of Radiochromic Films and Dosimetry CheckTM for Patient-specific QA in Helical Tomotherapy)

  • 박수연;채문기;임준택;권동열;김학준;정은아;김종식
    • 대한방사선치료학회지
    • /
    • 제32권
    • /
    • pp.93-109
    • /
    • 2020
  • 목 적: 나선형 토모테라피 방사선치료를 위한 환자별 품질관리용 라디오크로믹 필름 및 3차원 분석시스템인 Dosimetry CheckTM (DC, MathResolutions, USA)의 성능평가를 시행하였다. 대상 및 방법: 인체모형팬톰(Anderson Rando Phantom, USA)을 이용하여 위치 변이가 있는 3가지 형태의 복부 종양(130.6㎤), 복막 후면 종양(849.0㎤) 및 전 복부 전이 종양(3131.0㎤)을 모델링하였다. 조사면 고정너비(field width, FW)를 2.5-cm, 5.0-cm, 피치(pitch) 0.287, 0.43으로 하여 부위별 4개씩(plan01-plan04), 총 12개의 비교용 치료계획을 수립하였다. 이온전리함(1D)과 라디오크로믹 필름(Gafchromic EBT3, Ashland Advanced Materials, USA)을 치즈팬톰 내 삽입하는 방법(2D)과 빔 플루언스 로그정보를 이용하여 CT영상 위에 선량을 3차원으로 재구성하는 방식의 DC측정을 진행하였다. 스레드효과(thread effect)를 분석을 위해 리플(ripple) 진폭(%)를 계산하였고, 선량 분포의 패턴 분석을 위해 감마인덱스 분석(DD: 3%/DTA: 3mm, 합격 문턱 값: 95%)을 수행하였다. 결 과: 리플 진폭 측정 결과 복막 후면 종양이 평균 23.1%로 가장 높았다. 라디오크로믹 필름의 분석결과, 절대 선량 평균 1.0±0.9%, 감마인덱스분석 평균 96.4±2.2%로 95% 이상 통과하였으나 전 복부 전이 종양과 같이 넓은 부위 평가에 범위의 제한적이었다. 인체모형팬톰에 적용한 DC 분석결과 FW가 5.0-cm인 세 부위의 2D 및 3D 플랜 평균이 91.8±6.4%였다. 세 단면 및 선량 프로파일 분석을 통해 복막 후면 및 전 복부 종양 표적 전체 영역에 분석이 가능하였고, 선량-용적 히스토그램을 통한 계획 선량 대 측정의 선량 오차가 FW 및 pitch에 따라 커지는 것을 확인하였다. 결 론: DC측정방법은 별도의 측정기 없이 조사 중 측정된 빔 플루언스 로그정보만으로 3차원 환자 영상 데이터 위에 선량 오류를 구현할 수 있고 종양의 위치나 크기에 제한이 없어 크고 불규칙한 종양의 나선형 토모테라피의 치료 시 환자별 품질관리 성능이 매우 우수하며 활용도가 높을 것으로 생각한다.

협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템 (SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering)

  • 조용민;남기환
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.77-110
    • /
    • 2017
  • 최근 인터넷 기반의 웹 및 모바일 기기를 통한 소비 패턴의 다양화와 개성화가 급진전됨에 따라 전통적 유통채널인 오프라인 매장의 효율적 운영이 더욱 중요해졌다. 매장의 매출과 수익 모두를 제고하기 위해 매장은 소비자에게 가장 매력적인 상품을 적시에 공급-판매 해야 하는데 많은 상품들 중에서 어떤 SKU를 취급하는 것이 판매 확률을 높이고 재고 비용을 낮출 수 있는지에 대한 연구가 부족한 실정이다. 특히, 여러 지역에 걸쳐 다수의 오프라인 매장을 통해 상품을 판매하는 기업의 경우 고객에게 매력적인 적절한 SKU를 추천 받아 취급할 수 있다면 매장의 매출 및 수익률 제고에 도움이 될 것이다. 본 연구에서는 개인화 추천에 이용되어 왔던 협업 필터링과 하이브리드 필터링 등의 추천 시스템(Recommender System)을 국가별, 지역별로 복수의 판매 매장을 통해 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하였다. 각 매장의 취급 품목별 구매 데이터를 활용하여 각 매장 별 유사성(Similarity)을 계산하고 각 매장의 SKU별 판매 이력에 따라 협업 필터링을 하여 최종적으로 매장에 개별 SKU를 추천하였다. 또한 매장 프로파일 데이터를 활용하여 주변수 분석 (PCA : Principal Component Analysis) 및 군집 분석(Clustering)을 통하여 매장을 4개의 군집으로 분류한 뒤 각 군집 내에서 협업 필터링을 적용한 하이브리드 필터링 방식으로 추천 시스템을 구현하고 실제 판매 데이터를 바탕으로 두 방식의 성능을 측정하였다. 현존하는 대부분의 추천 시스템은 사용자에게 영화, 음악 등의 아이템을 추천하는 방식으로 연구가 진행되어 왔고 실제로 산업계에서의 적용 또한 개인화 추천 시스템이 주류를 이루고 있다. 그 동안 개인화 서비스 영역에서 주로 다루어져 왔던 이러한 추천 시스템을 동종 브랜드를 취급하는 유통 기업의 매장 단위에 적용하여 각 매장의 취급 SKU를 추천하는 방식에 대한 연구는 거의 이루어지지 않고 있는 실정이다. 기존 추천 방법론의 추천 적용 대상이 '개인의 영역이었다면 본 연구에서는 국가별, 지역별로 복수의 판매 매장을 통해 개인의 영역을 넘어 매장의 영역으로 확대하여 동종 브랜드를 취급하는 유통 기업의 매장 단위 취급 SKU 추천 방식을 제안하고 있다. 또한 기존의 추천시스템은 온라인에 한정되었다면 이를 오프라인으로 활용 범위를 넓히고, 기존 개인을 기반으로 분석을 하는 것보다 매장영역으로 확대 적용하기에 적합한 알고리즘을 개발하기 위해 데이터마이닝 기법을 적용하여 추천 방법을 제안한다. 본 연구의 결과가 갖는 의의는 개인화 추천 알고리즘을 동일 브랜드를 취급하는 복수의 판매 매장에 적용하여 의미 있는 결과를 도출하고 실제 기업을 대상으로 시스템으로 구축하여 활용할 수 있는 구체적 방법론을 제시했다는 데에 있다. 개인화 영역을 위주로 이루어졌던 기존의 추천 시스템과 관련한 학계의 연구 영역을 동종 브랜드를 취급하는 기업의 판매 매장으로 확장시킨 첫 시도라는 데에도 의미가 있다. 2014년 03주차 ~ 05주차 전(全) 매장 판매 수량 실적 Top 100개 SKU로 추천의 대상을 한정하여 협업 필터링과 하이브리드 필터링 방식으로 52개 매장 별로 취급 SKU를 추천하고, 추천 받은 SKU에 대한 2014년 06주차 매장별 판매 실적을 집계하여 두 추천 방식의 성과를 비교하였다. 두 추천 방식을 비교한 이유는 본 연구의 추천 방법이 기존 추천 방식 보다 높은 성과를 입증하기 위해 단순히 오프라인에 협업필터링을 적용한 것을 기준 모델로 정의하였다. 이 기준 모델에 오프라인 매장 관점의 특성을 잘 반영한 본 연구 모델인 하이브리드 필터링 방법과 비교 함으로써 성과를 입증한다. 연구에서 제안한 방식은 기존 추천 방식보다 높은 성과를 나타냈으며, 이는 국내 대기업 의류업체의 실제 판매데이터를 활용하여 입증하였다. 본 연구는 개인 수준의 추천시스템을 그룹수준으로 확장하여 효율적으로 접근하는 방법을 이론적인 프레임 워크를 만들었을 뿐 아니라 실제 데이터를 기반으로 분석하여 봄으로써 실제 기업들이 적용해 볼 수 있다는 점에서 연구의 가치가 크다.