• 제목/요약/키워드: 패턴 추출 학습

검색결과 411건 처리시간 0.027초

정의형 질의응답 시스템을 위한 정답 패턴 (Answer Pattern for Definitional Question-Answering System)

  • 서영훈;신승은
    • 한국콘텐츠학회논문지
    • /
    • 제5권3호
    • /
    • pp.209-215
    • /
    • 2005
  • 본 논문에서는 정의형 질의응답 시스템을 위한 정답 패턴에 대하여 기술한다. 정의형 질의응답 시스템은 정의형 질의에 대한 정답으로 단답형 정답이 아닌 서술형 정답을 제공하기 때문에, 정답 추출 방법이 일반적인 단답형 정답 추출 방법과 다르다. 정의형 정답 패턴을 이용한 정의형 정답 추출은 의미 분석없이 정확한 정의형 정답을 추출할 수 있다. 정의형 정답 패턴은 정확한 정답 추출을 위해 정답 패턴과 패턴별 제약 규칙, 우선순위로 구성된다. 정의형 정답 학습 코퍼스로부터 정답 패턴을 추출하고, 각각의 정답 패턴에 대한F-measure에 따라 최적화하여 패턴별 제약 규칙을 구성한다. 마지막으로 정확률과 정답 패턴 구문 구조를 이용하여 우선순위를 결정한다. 제안한 정의형 정답 패턴을 이용한 정의형 정답 추출은 실험 코퍼스에 대해 정확률 0.8207, 재현율 0.9268, F-measure 0.8705를 보였다. 이것은 제안한 방법이 정의형 질의응답 시스템에 효율적으로 사용될 수 있음을 의미한다.

  • PDF

새로운 점진적 인스턴스 기반 학습기법 (A New Incremental Instance-Based Learning Algorithm)

  • 한진철;윤충화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.477-480
    • /
    • 2005
  • 메모리 기반 추론 기법에서 기억공간의 효율적 사용과 분류 시간을 줄이기 위한 다양한 방법들이 연구되고 있으며, NGE(Nested Generalized Exemplar) 이론을 예로 들 수 있다. 본 논문에서는 학습 패턴 집합으로부터 대표패턴을 생성하는 RPA(Recursive Partition Averaging) 기법과 점진적으로 대표패턴을 추출하는 IRPA(Incremental RPA) 기법을 제안한다.

  • PDF

대표 패턴을 사용한 가변 기울기 역전도 알고리즘의 점진적 학습방법 (The Incremental Learning Method of Variable Slope Backpropagation Algorithm Using Representative Pattern)

  • 심범식;윤충화
    • 한국컴퓨터정보학회논문지
    • /
    • 제3권1호
    • /
    • pp.95-112
    • /
    • 1998
  • 역전도 알고리즘은 연관 기억장치, 음성 인식, 패턴인식, 로보틱스등 여러 응용 분야에 다양하게 사용되고 있다. 그러나 새로운 학습 패턴을 추가적으로 학습시키려면 이전에학습했던 모든 패턴과 추가되는 패턴을 갖고 처음부터 새로운 학습을 수행하여야 한다. 이는 패턴의 개수가 점차 늘어날수록 학습에 소요되는 시간이 기하 급수적으로 길어지는 결과를 초래하게 된다. 따라서 주기적으로 다량의 데이터를 추가로 학습을 할 경우에 이러한 점진적 학습은 반드시 해결해야 할 문제점으로 간주된다. 본 논문에서는 기존의 신경망 구조는 그대로 유지하면서 대표 패턴을 추출해 추가 학습을 수행하는 방법을 제안하고 제안된 기법의 효율성을 위해 기계 학습 분야의 벤치마크로 많이 사용되는 Monk's data와 Iris data에 적용해 보았다.

  • PDF

인지이론과 ART 신경회로망에 기반한 한글 문자 분류 모델 (Hangeul Character Classification Model Based on Cognitive Theory and ART Neural Network)

  • 박중양;박재흥;장재혁
    • 한국콘텐츠학회논문지
    • /
    • 제5권5호
    • /
    • pp.33-42
    • /
    • 2005
  • 본 논문에서는 ART 신경회로망의 성능을 개선하기 위해, 불필요한 클러스터의 생성과 변화를 억제하여 효율적인 패턴 분류가 가능하도록 하는 학습 알고리즘을 제안한다. 또한, 패턴 분류의 정확성을 향상시키기 위해 한글의 구조적 특징을 이용한 위치추출 알고리즘을 적용하였다. 제안하는 학습 알고리즘은 현재 학습되는 패턴과 최초 패턴간의 일치도를 비교한 후 리세트 시스템을 작동케 한다. 그 결과, 신경회로 망은 이미 입력되었던 패턴이 다시 입력되어도 새로운 클러스터의 생성을 방지하여 오인식율을 줄이게 된다.

  • PDF

음향적 요소분석과 DRNN을 이용한 음성신호의 감성인식 (Analyzing the acoustic elements and Emotion Recogintion from Speech Signal based on DRNN)

  • 박창현;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.489-492
    • /
    • 2002
  • 최근 인간형 로봇에 대한 개발이 괄목할 만한 성장을 이루고 있고, 친근한 로봇의 개발에 중요한 역할을 담당하는 것으로써 감성/감정의 인식이 필수적이라는 인식이 확산되고 있다. 본 논문은 음성의 감정인식에 있어 가장 큰 부분을 차지하는 피치의 패턴을 인식하여 감정을 분류/인식하는 시뮬레이터의 개발과 실험결과를 나타낸다. 또한, 피치뿐 아니라 음향학적으로 날카로움, 낮음등의 요소를 분류의 기준으로 포함시켜서 좀더 신뢰성 있는 인식을 할 수 있음을 보인다. 시뮬레이터의 내부 구조로는 음성으로부터 피치를 추출하는 부분과 피치의 패턴을 학습시키는 DRNN 부분, 그리고, 음향적 특성을 추출하는 음향 추출부가 주요 요소로 이루어져 있다. 그리고, 피치를 추출하는 방법으로는 Center-Clipping 함수를 이용한 autocorrelation approach를 사용하고, 학습 시 최적의 개체를 찾는 방법으로써 (1+100)-ES를 사용한다.

다치 신경망을 이용한 패턴 인식 (Pattern Recognition Based on Multi-Valued Logic Neural Network)

  • 김두완;허철회;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.241-244
    • /
    • 2002
  • 본 논문은 다치(MVL : Multiple Valued Logic) 신경망의 BP 알고리즘을 이용하여 패턴 인식에 응용하는 방법을 제안한다. 패턴처리에 필요한 원 패턴에 대한 물체 농도의 특징을 추출하고, 물체 농도의 특징을 다치로 사상시킨다. 또한 다치 신경망을 이용하여 원 패턴을 학습을 시킨 다음, 노이즈 패턴을 제거하여 원 패턴에 근접한 패턴을 인식하게 되므로, 패턴에 필요한 시간 및 기억 공간을 최소화할 수 있다.

  • PDF

독립변수의 차원 감소에 의한 일반회귀 신경망의 성능개선 (Performance Improvement of General Regression Neural Network by Reducing Dimensionality of Independent Variables)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.533-541
    • /
    • 2000
  • 본 논문에서는 독립변수들의 차원을 감소시켜 일반회귀 신경망의 성능을 개선하는 방법을 제안하였다. 제안된 방법에서는 적응적 학습 알고리즘의 주요성분분석 기법을 이용하여 독립변수 패턴의 특징을 추출하고 이를 일반회귀 신경망의 학습데이터로 이용하였다. 이는 주요성분분석 기법이 가지는 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 일반회귀 신경망이 가지는 제약을 해결하기 위함이다. 제안된 기법의 일반회귀 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 일반회귀 신경망에 의한 결과와 비교할 때 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 그리고 커널함수의 평활요소 설정 면에서도 우수한 특성이 있음을 확인할 수 있었다.

  • PDF

복합형 신경망을 이용한 손동작 인식기법 (A Hand Gesture Recognition Method Using a Hybrid Neural Network)

  • 이조셉;조일국;김호준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.59-62
    • /
    • 2006
  • 본 논문에서는 CNN 모델과 WFMM 신경망의 특성을 상호 결합한 손동작 인식기법을 제안한다. 특징 추출 모듈로 사용된 CNN 모델은 움직임 정보에 기초한 특징지도상에서 특징의 위치 이동이나 왜곡에 의한 성능 저하를 개선시키는 계층간 연결구조를 갖는다. WFMM 신경망에 기반한 패턴 분류 모듈은 간결하고 강력한 학습기능을 지원하며, 학습된 신경망은 분류 능력을 그대로 유지한 상태에서 추가 학습이 가능하다는 장점을 지닌다. 또한 이 패턴 분류 모델은 학습패턴으로부터 특징의 상대적 중요도를 평가하는, 이른바 특징 선정 기법을 지원한다. 본 논문에서는 제안된 모델의 동작 특성과 학습 알고리즘을 소개하고, 손동작 인식문제에 적용한 실험을 통하여 이론의 타당성을 평가한다.

  • PDF

Wavelet변환과 신경회로망에 의한 위장 영상의 질환 부위 패턴 인식 알고리즘 (Disease Region Pattern Recognition Algorithm of Gastrointestinal Image using Wavelet Transform and Neural Network)

  • 이상복;이주신
    • 전자공학회논문지S
    • /
    • 제36S권5호
    • /
    • pp.70-77
    • /
    • 1999
  • 본 논문에서는 Wavelet을 이용한 위장 영상의 질환 부위 특징을 추출하여 질환 부위 패턴을 인식할 수 있는 알고리즘을 제안하였다. 전처리 과정으로서 위장 영상이 형태정보는 입력 영상을 DWT(Discrete wavelet transform)에 의해 4레벨 DWT 계수 행렬을 구하고 계수 행렬의 특징에 따라 저주파 계수 행렬로부터 저주파 특징 파라미터 32개, 수평 고주파 계수 행렬로부터 수평 고주파 특징 파라미터 16개, 수직 고주파 계수 행렬로부터 수직 고주파 특징 파라미터 16개, 그리고, 대각 고주파 계수 행렬로부터 대각 고주파 특징 파라미터 32개 등 모두 96개의 특징 파라미터를 추출한 후 각각의 특징 파라미터를 최대 값+0.5로 최소 값을 -0.5로 정규화 하여 신경회로망의 입력 벡터로 사용하였다. 위장 영상 패턴 인식을 위한 신경회로망은 교사 학습을 요구하는 다층 구조의 오차 역전파(Error back propagation)알고리즘으로 하였고 구조적 특성을 이용하여 입력층, 중간층, 출력층의 계층 구조로 설계하였다. 설계된 신경회로망의 학습은 학습계수를 0.2로 모우멘텀을 0.6으로 설정하여 출력층 최대오차가 0.01보다 작을 때까지 수행하였으며 약 8000회 정도 학습한 결과 설정값 보다 작은 결과를 얻었고 질환의 종류나 위치, 크기에 관계없이 100%의 인식률을 얻었다.

  • PDF

PCA와 HOG특징을 이용한 최적의 pRBFNNs 패턴분류기 기반 보행자 검출 시스템의 설계 (Design of Pedestrian Detection System Based on Optimized pRBFNNs Pattern Classifier Using HOG Features and PCA)

  • 임명호;박찬준;오성권;김진율
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1345-1346
    • /
    • 2015
  • 본 논문에서는 보행자 및 배경 이미지로부터 HOG-PCA 특징을 추출하고 다항식 기반 RBFNNs(Radial Basis Function Neural Network) 패턴분류기과 최적화 알고리즘을 이용하여 보행자를 검출하는 시스템 설계를 제안한다. 입력 영상으로부터 보행자를 검출하기 위해 전처리 과정에서 HOG(Histogram of oriented gradient) 알고리즘을 통해 특징을 추출한다. 추출된 특징은 고차원이므로 패턴분류기 분류 시 많은 연산과 처리속도가 따른다. 이를 개선하고자 PCA (Principal Components Analysis)을 사용하여 저차원으로의 차원 축소한다. 본 논문에서 제안하는 분류기는 pRBFNNs 패턴분류기의 효율적인 학습을 위해 최적화 알고리즘인 PSO(Particle Swarm Optimization)을 사용하여 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시킨다. 사용된 데이터로는 보행자 검출에 널리 사용되는 INRIA2005_person data set에서 보행자와 배경 영상을 각각 1200장을 학습 데이터, 검증 데이터로 구성하여 분류기를 설계하고 테스트 이미지를 설계된 최적의 분류기를 이용하여 보행자를 검출하고 검출률을 확인한다.

  • PDF