• 제목/요약/키워드: 패턴 추출 학습

검색결과 411건 처리시간 0.027초

효과적인 계단식 얼굴 검출을 위한 다중 특징 추출 (Multiple Feature Representation for Efficient Cascaded Face Detection)

  • 소형준;남미영;이필규
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.742-744
    • /
    • 2004
  • 본 논문은 복잡한 배경에서의 얼굴 검출에 있어서 다중 특징 추출 데이터로 학습한 계단식 분류기에 의한 방법을 제안한다 얼굴 검출에서 얼굴의 패턴은 상당히 다양한 영상 표현으로 나타나기 때문에 하나의 특징 추출 방법은 사람의 얼굴을 모델링 하기에는 부족하다. 따라서 여기서는 얼굴의 전체적인 지역적인 특징을 나타내는 Subregion과, 얼굴의 주파수 특성에 따라 좀 더 세밀하고 다양한 속성들을 나타내는 Haar 웨이블릿 변환을 이용하여 다중으로 특징을 추출하여 효과적인 모델링을 시도하였다. 특징을 추출한 얼굴과 비얼굴의 패턴(pattern)을 구분하기 위해서 패턴들의 통계적인 특성을 이용하여 각 추출방법에 맞게 학습된 Bayesian 분류기를 직렬로 연결하여 사용하였으며 비얼굴은 얼굴과 유사한 비얼굴(face-like nonface) 패턴들을 사용하여 모델링 하였다. 제안한 얼굴 검출 방식의 성능은 MIT-CMU 시험 영상들을 이용하여 평가하였다. 그 결과 한 가지 특징 추출을 사용하는 것 보다 두 가지 특징 추출을 병행한 계단식 구성이 더 정확한 검출 결과를 나타내었다.

  • PDF

XML 기반의 Wrapper 자동 생성 에이전트 (Automatic Wrapper Generating Agent based on XML)

  • 서희경;양재영;정현섭;최중민
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.48-50
    • /
    • 2000
  • 본 논문은 사용자를 대신해서 웹상의 여러 곳에 존재하는 정보를 추출하고 통합하여 사용자에게 제공하기 위한 에이전트 시스템을 설계하고자 한다. 정확한 정보 추출을 위해서는 추출하고자 하는 정보의 위치를 찾아내는 정보 추출 규칙이 요구된다. 이러한 규칙을 알아내기 위해서 본 논문에서 제안하는 시스템은 XML로 기술된 도메인 지식을 이용한다. 이 도메인 지식은 논리적 라인의 의미 분석에 사용되며, 논리적 라인의 의미를 기반으로 도메인 문서에서 추출해야 하는 정보의 패턴을 학습한다. 학습된 패턴에서 XML로 기술된 규칙을 생성하는데, 이 규칙은 Wrapper이 된다. 이렇게 생성된 규칙을 이용해서 정보를 추출하게 되며, 추출된 정보를 통합해서 사용자에게 제공하게 된다.

  • PDF

웹 데이터 마이닝을 위한 정보 추출패턴의 기계학습 (Machine Learning of Information Extract ion Patterns for Web Data Mining)

  • 김동석;차정원;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.115-122
    • /
    • 2001
  • 정보추출 기법을 논의할 때 핵심 역할을 차지하는 것이 추출 패턴(규칙)을 표현하는 종류와 규칙을 만들어 내는 기계학습의 방법이다. 본 논문에서는 mDTD(modified Document Type Definition)라는 새로운 추출패턴을 제안한다. mDTD는 SGML에서 사용되는 DTD를 구문과 해석 방식을 변형하여 일반적인 HTML에서의 정보추출에 활용되도록 설계하였다. 이러한 개념은 DTD가 문서에 나타나는 객체를 지정하는 역할을 하는 것을 역으로 mDTD를 이용하여 문서에 나타는 객체를 식별하는데 사용하는 것이다. mDTD 규칙을 순차기계학습으로 확장시켜서 한국어와 영어로된 인터넷 쇼핑몰 중에서 AV(Audio and Visual product) 도메인에 적용하여 실험하였다 실험 결과로 정보추출의 평균 정확도은 한국어와 영어에 대해서 각각 91.3%와 81.9%를 얻었다.

  • PDF

정보추출을 위한 학습 가능한 인터페이스 에이전트 (Trainable Interface Agents for Informal ion Extract ion)

  • 김용기;양재영;최중민
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.61-63
    • /
    • 2001
  • 본 논문의 목적은 기계 학습 방법을 이용하여 정보 추출 규칙의 패턴을 학습할 수 있는 인터페이스 에이전트의 개발에 있다. 인터페이스 에이전트는 사용자와 상호작용이 가능한 지능형 에이전트이다. 사용자는 인터페이스 에이전트와 상호작용을 하게 되며 에이전트는 이 상호 작용에서 사용자가 원하는 정보 추출 규칙을 학습하게 된다. 사용자는 웹 문서에서 원하는 정보의 위치를 지정하여 데이터를 인터페이스 에이전트에게 학습시킨다. 인터페이스 에이전트는 학습된 추출 규칙으로부터 사용자가 원하는 정보를 추출한다.

  • PDF

분류오차유발 패턴벡터 학습을 위한 학습네트워크 (Learning Networks for Learning the Pattern Vectors causing Classification Error)

  • 이용구;최우승
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.77-86
    • /
    • 2005
  • 본 논문에서는 분류오차를 추출하고 학습하여 분류성능을 개선하는 LVQ 학습 알고리즘을 설계하였다. 제안된 LVQ학습 알고리즘은 초기기준백터의 학습을 위해 SOM을 이용하고, LVQ 출력뉴런의 부류지정을 위하여 out-star 학습법을 사용하는 학습네트워크이다. 분류오차가 발생되는 패턴백터로 추출하기 위하여 오차유발조건을 제안하였고, 이 조건을 이용하여 분류오차를 유발시키는 입력패턴벡터로 구성되는 패턴백터공간을 구성하여 분류오차가 발생되는 패턴백터를 학습시키므로 분류오차수를 감소시키고, 패턴분류성능을 개선하였다. 제안된 학습알고리즘의 성능을 검증하기 위하여 Fisher의 Iris 데이터와 EMG 데이터를 학습백터 및 시험 백터로 사용하여 시뮬레이션 하였고, 제안된 학습방식의 분류 성능은 기존의 LVQ와 비교되어 기존의 학습방식보다 우수한 분류성공률을 확인하였다.

  • PDF

FMM 신경망에서 연관도요소를 이용한 규칙 추출 기법 (A Rule Extraction Method Using Relevance Factor for FMM Neural Networks)

  • 이승강;이재혁;김호준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.377-380
    • /
    • 2012
  • 본 연구에서는 학습데이터의 빈도요소를 반영하도록 수정된 구조의 FMM 신경망을 소개하고, 이로부터 패턴 분류를 위한 지식 표현을 생성하는 방법론을 제안한다. 하이퍼박스 멤버쉽함수는 5종류의 퍼지 분할을 기반으로 설정한 구간에 대하여 소속정도를 반영하여 결정하며, 각 차원별로 특징범위의 폭과 빈도 요소로부터 가중치 값이 학습된다. 본 연구에서는 제안된 이론을 수화인식 문제를 대상으로 고찰하였다. 인식 시스템의 구성은 특징추출을 위하여 3차원으로 확장된 구조의 CNN 모델을 사용하였으며, 수화패턴 데이터의 표현은 모션 히스토리 볼륨(Motion History Volume) 구조를 기반으로 하였다. 6종류의 수화패턴 동영상으로부터 27개 특징요소를 추출하고 이를 사용한 FMM 신경망의 학습과정과 지식의 추출 과정을 실험으로 보이고 그 유용성을 고찰한다.

다중 판별자를 가지는 동적 삼차원 뉴로 시스템 (A Dynamic Three Dimensional Neuro System with Multi-Discriminator)

  • 김성진;이동형;이수동
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권7호
    • /
    • pp.585-594
    • /
    • 2007
  • 오류역전파 방법을 이용하는 신경망들은 패턴들의 학습시간이 매우 오래 걸리고 또한 추가학습과 반복학습의 한계를 가지며, 이런 단점을 보완할 수 있는 이진신경망(Binary Neural Network, BNN)이 Aleksander에 의해 제안되었다. 그러나 BNN도 반복학습에 있어서는 단점을 가지고 있으며, 일반화 패턴을 추출하기 어렵다. 본 논문에서는 BNN의 구조를 개선하여 반복학습과 추가학습이 가능할 뿐 아니라, 특징점들까지 추출할 수 있는 다중 판별자를 가지는 삼차원 뉴로 시스템을 제안한다. 제안된 모델은 기존의 BNN을 기반으로 하여 만들어진 이차원 특징을 가지는 Single Layer Network(SLN)에 귀환회로가 추가되어 특징점들을 누적할 수 있는 삼차원 신경망이다. 학습을 통해 누적된 정보는 판별자의 각 신경세포에 임계치를 조정함으로써 일반화 패턴을 추출할 수 있다. 그리고 생성된 일반화 패턴을 인식에 재사용함으로써 반복학습의 효율성을 높였다. 최종 판정 단계에서는 Maximum Response Detector(MRD)를 이용하였다. 본 논문에서 제안한 시스템을 평가하기 위하여 NIST에서 제공하는 숫자 자료를 이용하였으며, 99.3%의 인식률을 얻었다.

재귀적 분할 평균에 기반한 점진적 규칙 추출 알고리즘 (An Incremental Rule Extraction Algorithm Based on Recursive Partition Averaging)

  • 한진철;김상귀;윤충화
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권1호
    • /
    • pp.11-17
    • /
    • 2007
  • 패턴 분류에 많이 사용되는 기법 중의 하나인 메모리 기반 추론 알고리즘은 단순히 메모리에 저장된 학습패턴 또는 초월평면과 테스트 패턴간의 거리를 계산하여 가장 가까운 학습패턴의 클래스로 분류하기 때문에 테스트 패턴을 분류하는 기준을 설명할 수 없다는 문제점을 가지고 있다. 이 문제를 해결하기 위하여, 메모리 기반 학습 기법인 RPA를 기반으로 학습패턴들에 내재된 규칙성을 표현하는 IF-THEN 형태의 규칙을 생성하는 점진적 학습 알고리즘을 제안하였다. 하지만, RPA에 의해 생성된 규칙은 주어진 학습패턴 집합에만 충실히 학습되어 overfitting 현상을 보이게 되며, 또한 패턴 공간의 과도한 분할로 인하여 필요 이상으로 많은 개수의 규칙이 생성된다. 따라서, 본 논문에서는 생성된 규칙으로부터 불필요한 조건을 제거함으로써 ovefitting 현상을 해결함과 동시에 생성되는 규칙의 개수를 줄일 수 있는 점진적 규칙 추출 알고리즘을 제안하였으며, UCI Machine Learning Repository의 벤치마크 데이터를 이용하여 제안한 알고리즘의 성능을 입증하였다.

ART1과 Delta-Bar-Delta 방법을 이용한 개선된 자가 생성 지도 학습 알고리즘 (Enhanced Self-Generation Supervised Learning Alrorithm Using ARTI and Delta-Bar-Delta Method)

  • 백인호;김태경;김광백
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.71-75
    • /
    • 2003
  • 오류 역전파 학습 알고리즘을 이용하여 영상 인식에 적용 할 경우에는 은닉층의 노드 수를 경험적으로 설정하므로, 학습시간과 지역최소화 및 정체현상이 발생한다. 그리고 ARTI 알고리즘은 입력 패턴과 저장 패턴간의 측정 방법인 유사성 검증 방법과 경계 변수의 설정에 따라 인식률이 좌우된다. 경계 변수의 값이 크면 입력 패턴과 저장 패턴사이에 약간의 차이만 있어도 새로운 카테고리(Category)로 분류하고, 반대로 경계 변수의 값이 적으면 입력 패턴과 저장 패턴 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 패턴들을 대략적으로 분류한다. 따라서 ART1 알고리즘을 영상 인식에 적용하기 위해서는 경계 변수를 경험적으로 설정하므로 인식률에 부정적인 영향을 갖는 문제점이 있다. 따라서 본 논문에서는 개선된 ART1 알고리즘과 지도 학습 방법을 결합하여 신경망의 은닉층 노드를 동적으로 변화시키는 자가 생성지도 학습 알고리즘을 제안한다. 제안된 신경망에서 입력층과 은닉층의 학습 구조에는 ART1 알고리즘을 개선하여 적용하고, 은닉층과 출력층의 학습 구조에는 은닉층에서 승자로 선택된 노드와 출력층 노드와 연결된 가중치만을 조정하고 Delta-Bar-Delta 알고리즘을 적용한다. 제안된 방법의 학습 성능을 분석하기 위하여 학생증 영상에서 추출한 학번 패턴 분류에 적용한 결과, 기존의 신경망 학습 알고리즘보다 학습 성능이 개선됨을 확인하였다.

  • PDF

적응형 재귀 분할 평균법을 이용한 메모리기반 추론 알고리즘 (A Memory-based Reasoning Algorithm using Adaptive Recursive Partition Averaging Method)

  • 이형일;최학윤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.478-487
    • /
    • 2004
  • 메모리 기반 추론에서 기억공간의 효율적인 사용과 분류성능의 향상을 위하여 제안되었던 RPA(Recursive Partition Averaging)알고리즘은 대상 패턴 공간을 분할 한 후 대표 패턴을 추출하여 분류 기준 패턴으로 사용한다. 이 기법은 메모리 사용 효율과 분류 성능 면에서 우수한 결과를 보였지만, 분할 종료 조건과 대표패턴의 추출 방법이 분류 성능 저하의 원인이 되는 단점을 가지고 있었다. 여기에서는 기존 RPA의 단점을 보안한 ARPA(Adaptive RPA) 알고리즘을 제안한다. 제안된 알고리즘은 패턴 공간의 분할 종료 조건으로 특징별 최빈 패턴 구간(FPD: Feature-based population densimeter)추출 알고리즘을 사용하며, 학습 결과 패턴의 생성을 대표패턴 추출기법 대신 최빈 패턴 구간을 이용하여 생성한 최적초월평면(OH: Optimized Hyperrectangle)을 사용한다. 제안된 알고리즘은 k-NN 분류기에서 필요로 하는 메모리 공간의 40%정도를 사용하며, 분류에 있어서도 RPA보다 우수한 인식 성능을 보이고 있다. 또한 저장된 패턴의 감소로 인하여, 실제 분류에 소요되는 시간 비교에 있어서도 k-NN보다 월등히 우수한 성능을 보이고 있다.