• Title/Summary/Keyword: 패턴 깊이

Search Result 208, Processing Time 0.027 seconds

An Efficient Depth First Algorithm for Mining Sequential Patterns with Quantities (퀀터티가 있는 순차 패턴을 찾는 깊이 우선 탐색 알고리즘)

  • 김철연;심규석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.13-15
    • /
    • 2004
  • 순차 패턴을 찾는 것은 데이타 마이닝 응용분야에서 중요한 문제이다. 기존의 순차 패턴 마이닝 알고리즘들은 아이템으로만 이루어진 순차 패턴만을 취급하였으나 Apriori-QSP에서는 새롭게 퀀터티 정보에 대한 처리의 개념을 도입하였다. 전채 순차 패턴을 찾는 알고리즘들은 너비 우선 탐색과 깊이 우선 탐색 기법으로 분류할 수 있는데, 이러한 분류에서 Apriori-QSP알고리즘은 너비 우선 탐색 기법으로 분류할 수 있다. 본 논문에서는 퀀터티 정보를 처리하는 깊이 우선 탐색 기법을 제안하였다. Apriori-QSP에서 제안되었던 후보패턴 생성에 대한 필터링파 샘플링 기법을 깊이 우선 탐색의 탐색 기법으로 적용하였으며, 다양한 실험 결과들이 깊이 우선 탐색에서도 이러한 기법이 효율적임을 보여 주고 있다. 또한 길이가 긴 순차 패턴 마이닝의 경우 너비우선 탐색에 비해 향상된 성능을 보임을 확인하였다.

  • PDF

Structured lights Calibration for Depth Map Acquisition System (깊이맵 획득을 위한 가시구조광 캘리브레이션)

  • Yang, Seung-Jun;Choo, Hyon-Gon;Cha, Jihun;Kim, Jinwoong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.242-243
    • /
    • 2011
  • 구조광을 이용하는 깊이 정보 획득 방법에서 코드화된 패턴의 색상 정보는 촬영된 영상으로부터 패턴을 해석하여 패턴의 위상 변화량으로부터 물체의 깊이 정보를 찾기 위함으로 구조광 패턴들이 대상에 정확하게 투영되는 것이 중요하다. 그러나 프로젝터의 특성에 따라 패턴의 RGB 채널들이 종종 좌표에서 어긋나는 현상이 발생하게 된다. 본 논문에서는 프로젝터의 특성에 따른 컬러 구조광의 캘리브레이션을 위한 방법을 제안한다. 제안하는 방법은 시변화 가시구조광 시스템의 캘리브레이션 과정 중에서 투사된 영상으로부터 RGB 패턴 채널을 추출하고, 추출된 패턴으로부터 각 RGB 채널에 대한 히스토그램을 통하여 패턴 채널이 어느 방향으로 번져 나갔는지를 파악하여 원 패턴에 대한 재정렬을 수행한다. 본 논문의 실험결과에 따르면, 기존의 방법에 비해 간단한 방법으로 가시구조광 패턴에 대한 캘리브레션을 수행할 수 있음을 보여준다.

  • PDF

Pattern Decoding for Depth Map Acquisition System using time-varying structured lights (시변화 가시구조광 깊이 영상 획득을 위한 칼라 패턴 해석)

  • Choo, Hyon-Gon;Choi, Jinsu;Kim, Jinwoong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.244-246
    • /
    • 2011
  • 컬러 구조광을 이용한 깊이 정보 획득 시스템에서 구조광의 패턴의 색상 정보를 정확하게 추출하는 것이 중요하다. 본 논문에서는 시변화 가시구조광 시스템을 위한 색상 패턴을 해석하는 방법에 대해서 제안한다. 제안하는 방법은 시변화 가시구조광의 패턴이 투사된 영상으로부터 투사된 색상 정보를 추출하고, 추출된 색상 정보로부터 색상 패턴의 ID를 추출한다. 추출된 정보는 물체에 대한 깊이 정보로 계산될 수 있다. 패턴 ID를 빠르고 정확하게 추출하기 위해 최초의 원 패턴 정보를 기반으로 하여 Look-up 테이블을 구성하고, 이 테이블 정보를 이용하여 초기 패턴 ID 정보를 추출한다. 이후 추출된 패턴 ID에 대해서 신뢰도를 바탕으로 비어있는 정보를 채워준다. 본 논문의 실험에서는 제안하는 방법이 기존의 방법에 비해 정확하면서도 빠르게 색상 패턴 정보를 찾을 수 있음을 보여준다.

  • PDF

A Relative Depth Estimation Algorithm Using Focus Measure (초점정보를 이용한 패턴간의 상대적 깊이 추정알고리즘 개발)

  • Jeong, Ji-Seok;Lee, Dae-Jong;Shin, Yong-Nyuo;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.527-532
    • /
    • 2013
  • Depth estimation is an essential factor for robot vision, 3D scene modeling, and motion control. The depth estimation method is based on focusing values calculated in a series of images by a single camera at different distance between lens and object. In this paper, we proposed a relative depth estimation method using focus measure. The proposed method is implemented by focus value calculated for each image obtained at different lens position and then depth is finally estimated by considering relative distance of two patterns. We performed various experiments on the effective focus measures for depth estimation by using various patterns and their usefulness.

Face Recognition Method Based on Local Binary Pattern using Depth Images (깊이 영상을 이용한 지역 이진 패턴 기반의 얼굴인식 방법)

  • Kwon, Soon Kak;Kim, Heung Jun;Lee, Dong Seok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.6
    • /
    • pp.39-45
    • /
    • 2017
  • Conventional Color-Based Face Recognition Methods are Sensitive to Illumination Changes, and there are the Possibilities of Forgery and Falsification so that it is Difficult to Apply to Various Industrial Fields. In This Paper, we propose a Face Recognition Method Based on LBP(Local Binary Pattern) using the Depth Images to Solve This Problem. Face Detection Method Using Depth Information and Feature Extraction and Matching Methods for Face Recognition are implemented, the Simulation Results show the Recognition Performance of the Proposed Method.

The effect of brightness contrast on resolving the correspondence problem (상의 대응 문제 해결에 미치는 밝기 대비의 영향)

  • 감기택;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.4
    • /
    • pp.49-56
    • /
    • 2001
  • When multiple features are presented in the image the computational models for stereopsis select the most activated matches through the excitatory and inhibitory interactions among all possible matches. Using the random-dot stereogram with two surfaces. we investigate whether human binocular mechanism selects the most activated matches. The dots consisting a surface lying in a fixation plane were selected randomly while each of the dots consisting the other surface was paired with each of the original dots in the following manner. After finding the position of each dots in the original random pattern we placed an additional dot to the left and to the right of the original position in each of the left and right image of a stereogram respectively. The luminance of additional dots was varied while that of the original random dots was fixed so that the hypothetical matches presumably could be activated differently. Across the luminance condition the depth of each surface was measured to examine whether matches to be selected were changed depending on the activation level of possible matches. When the luminance of two patterns was within 30% of one another observers perceived an opaque surface. Beyond this value two transparent surfaces were seen with the magnitude of perceived depth varying with relative luminance of two patterns. When original pattern was brighter one additional surface was perceived at the depth corresponding to the disparity of original pattern. When original dot was dimmer. however the depth of an additional surface corresponded to the disparity of newly introduced pattern. These results suggest that there are dynamic interactions within the matching process whereby highly activated matches inhibit weaker one.

  • PDF

Semi-auto Calibration Method Using Circular Sample Pixel and Homography Estimation (원형 샘플 화소와 호모그래피 예측을 이용한 반자동 카메라 캘리브레이션 방법)

  • Shin, Dong-Won;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.67-70
    • /
    • 2015
  • 최근 깊이 영상 기반 렌더링 방법을 이용하여 제작된 3차원 컨텐츠가 우리의 눈을 즐겁게 해주고 있다. 이러한 깊이 영상 기반 렌더링에서는 필연적으로 색상 카메라와 깊이 카메라 간의 시점 차이가 발생한다. 따라서 두 시점을 일치시키는 전처리 과정으로서 카메라 파라미터가 중요한 역할을 수행한다. 카메라 파라미터를 획득하는 과정으로 카메라 캘리브레이션이 수행된다. 널리 사용되는 기존의 카메라 캘리브레이션 방법은 평면의 체스보드 패턴을 여러 자세로 촬영한 다음 패턴 특징점을 손으로 직접 선택해야하는 불편함이 따른다. 따라서 본 논문에서는 이 문제를 해결하기 위해 원형 샘플 화소 검사와 호모그래피 예측을 이용한 반자동 카메라 캘리브레이션을 제안한다. 제안하는 방법은 먼저 FAST 코너 검출 알고리즘을 이용하여 패턴 특징점의 후보를 영상으로부터 추출한다. 다음으로 원형 샘플 화소를 검사하여 후보군의 크기를 줄인다. 그리고 호모그래피 예측을 통해 손실된 패턴 특징점을 보완하는 완전한 패턴 특징점군을 획득한다. 마지막으로 화소 정확성 향상을 통해 실수 단위의 정확성을 가지는 패턴 특징점의 위치를 획득한다. 실험을 통해 제안하는 방법이 기존의 방법과 비교하여 카메라 파라미터의 정확성은 유지하고 수작업의 불편함을 해소할 수 있음을 확인했다.

  • PDF

Upper-body Pose Analysis using Cylindrical Coordinate System (원통좌표시스템을 이용한 상반신 포즈 분석)

  • Park, Jae-Wan;Kim, Dae-Young;Lee, Chil-Woo
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.359-361
    • /
    • 2012
  • 본 논문에서는 깊이영상에서 상반신 포즈 분석을 위하여 원통좌표시스템을 제안한다. 깊이영상에서 포즈 후보 영역을 설정하고, 포즈 후보 영역을 이용하여 카메라로부터 신체 중심점까지의 거리와 신체 특징에 따라 원통좌표계를 설정한다. 그리고 밝기값으로 표현되는 깊이 정보를 이용하여 특징벡터를 추출한다. 추출된 원통좌표계의 특징벡터는 원형의 특징공간에 표현되고 포즈 패턴으로 분류된다. 그리고 포즈 패턴들은 특징벡터들의 평균값을 이용하여 학습되고 미리 정의된 포즈 패턴들과 유클리디언 거리로 비교하여 포즈로 분류된다. 본 논문은 상반신 포즈 후보 영역에 동적인 원통 모델을 적용하여 간단한 연산을 통해 머리와 몸통, 팔을 구분할 수 있도록 효과적인 포즈 정보 추출에 목적을 두고 있다.

Smoke Detection Based on RGB-Depth Camera in Interior (RGB-Depth 카메라 기반의 실내 연기검출)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.155-160
    • /
    • 2014
  • In this paper, an algorithm using RGB-depth camera is proposed to detect smoke in interrior. RGB-depth camera, the Kinect provides RGB color image and depth information. The Kinect sensor consists of an infra-red laser emitter, infra-red camera and an RGB camera. A specific pattern of speckles radiated from the laser source is projected onto the scene. This pattern is captured by the infra-red camera and is analyzed to get depth information. The distance of each speckle of the specific pattern is measured and the depth of object is estimated. As the depth of object is highly changed, the depth of object plain can not be determined by the Kinect. The depth of smoke can not be determined too because the density of smoke is changed with constant frequency and intensity of infra-red image is varied between each pixels. In this paper, a smoke detection algorithm using characteristics of the Kinect is proposed. The region that the depth information is not determined sets the candidate region of smoke. If the intensity of the candidate region of color image is larger than a threshold, the region is confirmed as smoke region. As results of simulations, it is shown that the proposed method is effective to detect smoke in interior.

High Resolution Depth-map Estimation in Real-time using Efficient Multi-threading (효율적인 멀티 쓰레딩을 이용한 고해상도 깊이지도의 실시간 획득)

  • Cho, Chil-Suk;Jun, Ji-In;Choo, Hyon-Gon;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.945-953
    • /
    • 2012
  • A depth map can be obtained by projecting/capturing patterns of stripes using a projector-camera system and analyzing the geometric relationship between the projected patterns and the captured patterns. This is usually called structured light technique. In this paper, we propose a new multi-threading scheme for accelerating a conventional structured light technique. On CPUs and GPUs, multi-threading can be implemented by using OpenMP and CUDA, respectively. However, the problem is that their performance changes according to the computational conditions of partial processes of a structured light technique. In other words, OpenMP (using multiple CPUs) outperformed CUDA (using multiple GPUs) in partial processes such as pattern decoding and depth estimation. In contrast, CUDA outperformed OpenMP in partial processes such as rectification and pattern segmentation. Therefore, we carefully analyze the computational conditions where each outperforms the other and do use the better one in the related conditions. As a result, the proposed method can estimate a depth map in a speed of over 25 fps on $1280{\times}800$ images.