Proceedings of the Korea Contents Association Conference
/
2019.05a
/
pp.287-288
/
2019
그래프에서 이상 패턴은 정상 그래프와 상이하게 다른 양상을 갖는 그래프를 의미한다. 이상 패턴을 판단하기 위해서는 정상데이터 정확한 정의가 요구된다. 본 논문에서는 스트림 그래프에서 실시간으로 이상 패턴을 감지하는 기법을 제안한다. 제안하는 기법은 정상 서브그래프의 패턴(정상 패턴)을 정의하고 정점 간 연결 관계를 고려한다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.169-171
/
2005
그래프를 사용하는 데이터 표현법은 직$\cdot$간접적으로 실세계를 표현하는 다양한 데이터 모델 중에서 가장 일반화된 방법으로 알려져 있다. 기본적으로 그래프는 정점과 간선으로 구성되며, 정점과 간선은 그 중요도나 운영 목적에 따라 다양한 가중치가 부여될 수 있다. 특히, 이러한 그래프를 순회하는 트랜잭션들로부터 중요한 순회패턴을 탐사하는 것은 흥미로운 일이다. 본 논문에서는, 정점과 간선에 가중치가 있고 방향성을 가진 기반 그래프가 주어졌을 때, 그 그래프를 순회하는 트랜잭션들로부터 가중치를 고려하여 빈발 순회패턴을 탐사하는 방법을 제안한다. 또한, 이렇게 탐사한 결과에 가중치를 고려한 중요도를 평가하여 빈발 순회패턴들 간의 우선순위를 결정할 수 있도록 한다. 이 과정에서 발생할 수 있는 트랜잭션 노이즈는 기반 그래프의 간선 가중치의 평균과 표준편차를 이용하여 제거함으로써 보다 신뢰성 있는 빈발 순회패턴을 탐사할 수 있다. 제안한 논문은 웹 로그 마이닝 등 그래프를 이용하는 다양한 응용 분야에 적용할 수 있을 것이다.
Since frequent pattern mining was proposed in order to search for hidden, useful pattern information from large-scale databases, various types of mining approaches and applications have been researched. Especially, frequent graph pattern mining was suggested to effectively deal with recent data that have been complicated continually, and a variety of efficient graph mining algorithms have been studied. Graph patterns obtained from graph databases have their own importance and characteristics different from one another according to the elements composing them and their lengths. However, traditional frequent graph pattern mining approaches have the limitations that do not consider such problems. That is, the existing methods consider only one minimum support threshold regardless of the lengths of graph patterns extracted from their mining operations and do not use any of the patterns' weight factors; therefore, a large number of actually useless graph patterns may be generated. Small graph patterns with a few vertices and edges tend to be interesting when their weighted supports are relatively high, while large ones with many elements can be useful even if their weighted supports are relatively low. For this reason, we propose a weight-based frequent graph pattern mining algorithm considering length-decreasing support constraints. Comprehensive experimental results provided in this paper show that the proposed method guarantees more outstanding performance compared to a state-of-the-art graph mining algorithm in terms of pattern generation, runtime, and memory usage.
Park, Ki-Sung;Han, Yong-Koo;Kim, Jin-Seung;Lee, Young-Koo
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.183-185
/
2012
행위 DB로부터 행위패턴 분석 및 마이닝을 위해서는 정교한 행위패턴 모델링 기술이 수반되어야 한다. 기존의 그래프기반 행위 패턴 모델링 방법은 하루 행위 시퀀스들의 동일한 행위 시퀀스 세그먼트를 찾아 하나의 행위 시퀀스로 결합시켜 행위 그래프를 생성하였다. 이 방법은 서로 다른 시간에 발생한 행위 시퀀스 세그먼트들이 하나의 행위 시퀀스로 결합되는 문제가 발생한다. 본 논문에서는 하루의 행위 시퀀스를 시간 세그먼트 단위로 분할하고, 각 시간 세그먼트별로 행위 그래프를 생성하여 정교한 행위 그래프 모델을 수립하는 방법을 제안한다. 그래프 마이닝 기법들을 활용한 실험을 통하여 제안하는 행위패턴 모델링 기법이 기존의 행위 그래프 모델 기법보다 더 유용함을 보인다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.12
/
pp.2287-2297
/
2007
The proposed ANIDS(Advanced Network Intrusion Detection System) which is network-based IDS using Association Rule Mining, collects the packets on the network, analyze the associations of the packets, generates the pattern graph by using the highly associated packets using Association Rule Mining, and detects the intrusion by using the generated pattern graph. ANIDS consists of PMM(Packet Management Module) collecting and managing packets, PGGM(Pattern Graph Generate Module) generating pattern graphs, and IDM(Intrusion Detection Module) detecting intrusions. Specially, PGGM finds the candidate packets of Association Rule large than $Sup_{min}$ using Apriori algorithm, measures the Confidence of Association Rule, and generates pattern graph of association rules large than $Conf_{min}$. ANIDS reduces the false positive by using pattern graph even before finalizing the new pattern graph, the pattern graph which is being generated is compared with the existing one stored in DB. If they are the same, we can estimate it is an intrusion. Therefore, this paper can reduce the speed of intrusion detection and the false positive and increase the detection ratio of intrusion.
Proceedings of the Korea Information Processing Society Conference
/
2006.05a
/
pp.97-100
/
2006
RDF 는 트리플의 집합으로서 그래프 데이터 모델로 표현되며, 사용자는 RDF 그래프 모델로부터 정보를 검색하기 위해 시멘틱 질의 언어를 사용한다. 그러나 이러한 접근 방식은 최악의 경우 전체 그래프 데이터 모델을 검색해야 되는 문제점이 발생한다. 이에 따라 최근의 연구에서는 시멘틱 질의를 효율적으로 처리하기 위해서 인덱스를 사용한다. 시멘틱 질의 언어(RDQL, SPARQL)의 핵심은 RDF 트리플에 대한 패턴을 기술함으로써 원하는 트리플 정보를 검색할 수 있게 하는 것이다. 따라서, 기존의 인덱스는 단일 트리플을 효율적으로 검색하는 데 초점을 둔다. 거라나 트리플 패턴의 집합으로 질의가 표현될 경우에는 트리플 패턴 사이의 상관관계 때문에 조인비용이 많이 발생하는 문제점이 있다. 본 논문에서는 조인 비용이 발생되는 문제점을 해결하기 위한 인덱싱 기법을 제안한다. RDF 그래프 모델에서 유지해야 할 정보를 줄이기 위해서 RDF 그래프 모델에 존재하는 유사한 서브 그래프를 하나의 서브 그래프로 병합한다. 병합절차를 마친 여러 서브 그래프에 존재하는 모든 경로를 인덱스에 유지 함으로써 조인 비용을 제거한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.5
/
pp.940-948
/
2007
Many real world problems can be modeled as a graph and traversals on the graph. The structure of Web pages can be represented as a graph, for example, and user's navigation paths on the Web pages can be model as a traversal on the graph. It is interesting to discover valuable patterns, such as frequent patterns, from such traversals. In this paper, we propose an algorithm to discover frequent traversal patterns when a directed graph and weighted traversals on the graph are given. Furthermore, we propose a performance enhancement by traversal split and then verify it through experiments.
Journal of the Korea Society of Computer and Information
/
v.25
no.4
/
pp.123-131
/
2020
The pattern query in graph database has advantages of easy query expression and high query processing performance compared to relational database SQL. However, unlike the relational database, the graph database may not utilize the advantages of pattern query depending on modeling because the methodology for building the logical data model is not defined. In this study, in the is-a node modeling method that appears during the graph modeling process, we experiment that there is a difference in performance between graph pattern query when designing with a generalization model and designing with a specialization model. As a result of the experiment, it was shown that better performance can be obtained when the is-a node is designed as a specialization model. In addition, when writing a pattern query, we show that if a variable is bound to a node or edge, performance may be better than that of the variable of not bounded. The experimental results can be presented as an is-a node modeling method for pattern query and a graph query writing method in the graph database.
No, Young-Sang;Yun, Un-Il;Pyun, Gwang-Bum;Ryang, Heung-Mo;Lee, Gang-In;Ryu, Keun-Ho;Lee, Kyung-Min
Journal of the Korea Society of Computer and Information
/
v.16
no.12
/
pp.33-41
/
2011
From Complicated graph structures, duplicated operations can be executed and the operations give low efficiency. In this paper, we propose an efficient graph mining algorithm of minimizing the extension of duplicated graph patterns in which the priorities of cyclic edges are considered. In our approach, the cyclic edges with lower priorities are first extended and so duplicated extensions can be reduced. For performance test, we implement our algorithm and compare our algorithm with a state of the art, Gaston algorithm. Finally, We show that ours outperforms Gaston algorithm.
Proceedings of the Korea Contents Association Conference
/
2017.05a
/
pp.19-20
/
2017
최근 소셜 미디어와 센서 장비의 기술의 발달로 그래프 데이터의 양이 급격히 증가 하였다. 그래프 데이터의 처리 과정에서 I/O 비용이 발생하여 데이터가 많아지면 병목현상으로 인해 데이터의 처리와 관리에 있어 성능에 한계가 발생한다. 이러한 문제를 해결하기 위해 데이터를 메모리에서 관리하는 캐시 기법에 대한 연구가 이루어 졌다. 본 논문에서는 서브그래프 데이터의 접근 패턴을 고려한 캐싱 기법을 제안한다. 그래프 환경에서 그래프 질의 이력을 통해 패턴을 찾고 질의 관리 테이블과 FP(frequent pattern)-Tree 통해 선별된 데이터를 메모리에 적재시킨다. 또한, 캐시 실패(cache miss)가 발생 하였을 때, 주변의 이웃 정점을 같이 메모리에 적재시킨다. 메모리가 가득 찰 경우 캐시 된 데이터를 퇴출시키는 교체 전략을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.