본 논문에서 제안한 특징 벡터 추출방법의 기본 아이디어는 융선 패턴의 지역 방위에 따라 그레이-스케일 영상의 융선을 따라가면서 융선의 방향성을 추출하는 것이다. 융선을 따라가는 시작점은 그레이-스케일 영상을 일정한 격자로 나누어서 격자 안의 중심점으로 결정한다. 그 다음에 융선을 따라가면서 여러 방향의 방향성 특징 벡터를 추출하고, 추출된 방향성 특징 벡터를 4방향성 특징 벡터로 라벨링한다. 실험은 4개의 지문에서 구성한 124개의 특징 패턴을 가지고 하였으며, 하나의 지문은 31개의 특징패턴으로 구성하였다. 그 결과 학습된 지문을 인식하는 능력이 매우 우수함을 보여주었다.
본 논문에서는 차량 영상의 수평 및 수직 명암 값 변화 정보를 이용하여 번호판 영역을 추출하고 원형 패턴 벡터를 이용하여 번호판 내용을 인식하는 알고리즘에 관해 기술하였다. 제안된 알고리즘에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 다른 영역보다 밀집도가 높다는 특성을 이용하여 수평 및 수직 명암도 변화값을 구하여 차량영상에서 번호판 영역을 추출하며 상당히 어둡거나 밝게 입력된 영상에도 동일한 인식 성능을 얻기 위하여 밝기 보정을 수행한다. 또한, 입력 문자의 크기, 이동 및 회전에 무관한 특성을 추출을 위해 원형 패턴 벡터를 이용하여 차량 번호를 인식하는 알고리즘을 제안하였다. 제안한 방법들을 적용한 결과 계산 속도가 훨씬 빠르며, 차량 번호판의 크기에 관계없이, 또한 잡음에 크게 영향을 받지 않으면서 번호판 추출이 정확하여 실시간 처리의 가능성을 제시하였을 뿐만 아니라 번호판 영역이 불투명하거나 불규칙한 조명 상태에서도 검출이 가능하였다.
본 논문에서는 명암도 변화값과 기하학적 패턴벡터를 이용하여 실시간으로 차량번호판을 추출하고 인식하는 알고리즘을 제안하였다. 일반적으로 차량영상에서는 번호판 영역에서 문자와 배경이 뚜렷하게 구별되고, 일정한 명암도 변화를 가지면서 번호판 이외의 다른 영역보다 밀집도가 높은 특성이 있다. 따라서 본 논문에서는 이러한 성질을 이용하여 먼저 명암도 변화값을 사용하여 번호판을 추출하도록 하였으며 영상 입력과정에서 외부 환경에 따라 차량영상이 어둡거나 밝게 입력될 경우에도 동일한 추출 성능을 얻기 위하여 밝기 보정 과정을 수행하였다. 또한 추출된 번호판 영역으로부터 입력 문자의 크기, 이동 및 회전에 무관한 특성 추출을 위해 번호판 영역에서 잡음 제거와 세선화를 적용하여 전처리후 제안한 기하학적 패턴벡터를 이용하여 차량번호를 인식하도록 하였다. 제안한 방법들을 적용한 결과 기존의 원형 패턴벡터 보다 계산 속도가 빠르며, 차량번호판의 크기와 잡음에 무관하며, 불규칙한 조명 상태에서도 정확한 차량 번호를 인식할 수 있었다.
다양한 특징들을 광학적으로 병렬추출하여 패턴인식을 수행하는 시스템을 제안하고 실험하였다. 추출하려는 특징은 6개의 방향선소들 및 선소특징만으로 구별되지 않는 패턴들에 대한 공분산행렬의 고유벡터들이다. 이 시스템은 크게 특징추출부와 패턴인식부로 구성된다. 전자는 여러 특징을 병렬적으로 추출하기 위해 다중 Vander Lugt 필터를 사용하여 광학적으로 구현되었으며, 후자는 이들 추출된 특징들을 사용하여 패턴인식이 수행되도록 컴퓨터에서 구현되었다. 패턴인식 방법으로는, 추출된 특징을 인공신경망에 학습을 시키는 방법과 단순히 선소들의 논리적인 개수를 사용하는 방법, 두 가지가 각각 사용되었다. 여기서는 선소들로만 구성된 15개의 영문자 패턴들에 대해 실험하였고 그 실험결과를 보고한다.
본 논문에서는 결정경계(decision boundary)를 이용한 신경망의 특징추출을 해석적으로 구현할 수 있는 방법을 제안한다. 최근 발표된 신경망의 결정경계 기반의 특징추출 방법은 기존의 특징추출 방법보다 우수한 성능을 보여 주었다. 이러한 결정경계 특징추출 방법은 패턴 분류기(pattern classifier)의 결정경계에 수직한 벡터가 패턴 클래스(class)간을 분류하는데 유용한 정보를 포함한다는 사실을 기반으로 원래의 데이터로부터 분류에 필요한 정보들만을 추출하게 된다. 그러나 기존의 결정경계 특징추출 알고리즘은 신경망 결정경계의 수직벡터를 구하기 위해 결정경계의 변화율(gradient) 근사 방법을 사용하였다. 그 결과 결정경계 수직벡터가 부정확하게 계산될 가능성이 있고 계산 시간이 길어지는 문제점이 존재한다. 본 논문에서는 이러한 문제점을 해결하기 위해 수직벡터를 하나의 방정식으로부터 해석적으로 계산하는 방법을 제안한다. 제안된 방법을 원격탐사 데이터의 패턴분류에 적용하여 그 성능을 확인한 결과 특징추출에 필요한 연산 시간을 대폭 줄일 수 있고 또한 더 향상된 특징추출 성능을 얻음을 확인하였다.
본 논문에서는 깊이영상에서 상반신 포즈 분석을 위하여 원통좌표시스템을 제안한다. 깊이영상에서 포즈 후보 영역을 설정하고, 포즈 후보 영역을 이용하여 카메라로부터 신체 중심점까지의 거리와 신체 특징에 따라 원통좌표계를 설정한다. 그리고 밝기값으로 표현되는 깊이 정보를 이용하여 특징벡터를 추출한다. 추출된 원통좌표계의 특징벡터는 원형의 특징공간에 표현되고 포즈 패턴으로 분류된다. 그리고 포즈 패턴들은 특징벡터들의 평균값을 이용하여 학습되고 미리 정의된 포즈 패턴들과 유클리디언 거리로 비교하여 포즈로 분류된다. 본 논문은 상반신 포즈 후보 영역에 동적인 원통 모델을 적용하여 간단한 연산을 통해 머리와 몸통, 팔을 구분할 수 있도록 효과적인 포즈 정보 추출에 목적을 두고 있다.
본 논문에서는 문서 위의 문자를 Off-Line방식으로 컴퓨터에 저장할 수 있도록 기하학적 패턴 벡터를 이용하여 한·영문자 및 글꼴을 인식하는 알고리즘을 제안하였다. 일반적으로 문서에서는 여러 가지 글꼴에 따라 글자의 형태가 다르므로 대표적인 한·영 세 가지 글꼴을 기하학적 패턴(Geometrical Pattern Vector)을 이용하여 크기와 이동에 인식하도록 하였다. 이진 입력 한영혼용 영상에서 잡음을 제거하고 수평·수직 투영 기법을 이용하여 한 문자를 분할하여 문자의 폭에 따라 기하학적 패턴을 추출한다. 추출한 패턴은 각 합계를 계산하여 기준 패턴 합계와 비교한 후 기준 패턴 문자와 글꼴을 인식하게 된다. 마지막으로 제안한 알고리즘의 성능을 평가하기 위해 크기, 이동 변형이 있는 대표적인 한·영 글꼴(신명조, 궁서, 고딕)체와 영어 Time New Roman체를 대상으로 모의 실험을 수행하였다. 제안한 알고리즘은 기존의 원형 패턴 알고리즘보다 문자인식률과 글꼴 그리고 영어의 대·소문자를 구별하는 우수함을 보였다.
본 논문에서는 화자 식별에서 음성신호의 애매한 점을 보완할 수 있는 신경회로망의 오차역전파학습 알고리즘과 모음구간 검출에 기초하여 입력되는 음성의 화자 패턴을 구분하는 일본어 단어 패턴인식 알고리즘을 제안한다. 제안하는 알고리즘에서는 일본어 데이터베이스로부터의 단어를 사용하여 음성의 특징벡터를 추출하여 분석하고 이러한 음성의 특징벡터의 차이를 이용하여 일본어 화자에 대한 패턴인식 실험을 수행하였다.
본 논문에서는 text-to-speech 시스템에서 사용할 억양 모델을 위해 벡터 양자화(vector quantization) 방식을 이용한다. 어절 경계강도(break index)는 세단계로 분류하였고, CART(Classification And Regression Tree)를 사용하여 어절 경계강도의 예측 규칙을 생성하였다. 예측된 어절 경계강도를 바탕으로 운율구를 예측하였으며 운율구는 다섯 개의 억양 패턴으로 분류하였다. 하나의 운율구는 정점(peak)의 시간축, 주파수축 값과 이를 기준으로 한 앞, 뒤 기울기를 추출하여 네 개의 파라미터로 단순화하였다. 운율구에 대해서 먼저 운율구가 문장의 끝일 경우와 아닐 경우로 분류하고, 억양 패턴 다섯 개로 분류하여. 모두 10개의 운율구 set으로 나누었다. 그리고 네 개의 파라미터를 가지고 있는 운율구의 억양 패턴을 벡터 양자화 방식을 이용하여 분류(clusteing)하였다 운율의 변화가 두드러지는 조사와 어미는 12 point의 기본주파수 값을 추출하고 벡터 양자화하였다. 운율구와 조사 어미의 codebook index는 문장에 대한 특징 변수 값을 추출하고 CART를 사용하여 예측하였다. 합성할 때에는 입력 tort에 대해서 운율구의 억양 파라미터를 추정한 다음, 조사와 어미의 12 point 기본주파수 값을 추정하여 전체 억양 곡선을 생성하였고 본 연구실에서 제작한 음성합성기를 통해 합성하였다.
본 논문에서는 단일 글꼴에 의존하는 원형 패턴 벡터(circular pattern vectors)를 이용하여 위치 이동, 크기 변화 그리고 회전에 무관한 새로운 인쇄체 한글 인식 알고리즘을 제안한다. 제안한 알고리즘은 2진 형태론(binary morphology)을 이용하여 입력 문자에 존재하는 잡음(noise)을 제거한 후, 원형 패턴벡터를 추출한다. 추출된 원형 패턴 벡터는 주어진 문자의 무게 중심을 원의 중심으로 하여 그린 여러 원주 상에 위치한 공간적인 분포 값을 나타내는 것이다. 마지막으로, 실험 문자는 기준 원형 패턴 벡터와 실험 원형 패턴 벡터간의 거리가 최소가 되는 기준 문자로 인식하게 된다. 제안한 알고리즘의 성능을 평가하기 위해, 크기 변화와 회전 변형이 있는 완성형 바탕체 한글 2,350자를 대상으로 모의 실험을 수행하였다. 제안한 알고리즘은 기존의 고리 투영 알고리즘보다 크기 변화와 회전 변형이 있는 한글 인식에 있어서 우수함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.