• Title/Summary/Keyword: 패밀리 도메인

Search Result 22, Processing Time 0.024 seconds

Mammalian Reproduction and Pheromones (포유동물의 생식과 페로몬)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.3
    • /
    • pp.159-168
    • /
    • 2006
  • Rodents and many other mammals have two chemosensory systems that mediate responses to pheromones, the main and accessory olfactory system, MOS and AOS, respectively. The chemosensory neurons associated with the MOS are located in the main olfactory epithelium, while those associated with the AOS are located in the vomeronasal organ(VNO). Pheromonal odorants access the lumen of the VNO via canals in the roof of the mouth, and are largely thought to be nonvolatile. The main pheromone receptor proteins consist of two superfamilies, V1Rs and V2Rs, that are structurally distinct and unrelated to the olfactory receptors expressed in the main olfactory epithelium. These two type of receptors are seven transmembrane domain G-protein coupled proteins(V1R with $G_{{\alpha}i2}$, V2R with $G_{0\;{\alpha}}$). V2Rs are co-expressed with nonclassical MHC Ib genes(M10 and other 8 M1 family proteins). Other important molecular component of VNO neuron is a TrpC2, a cation channel protein of transient receptor potential(TRP) family and thought to have a crucial role in signal transduction. There are four types of pheromones in mammalian chemical communication - primers, signalers, modulators and releasers. Responses to these chemosignals can vary substantially within and between individuals. This variability can stem from the modulating effects of steroid hormones and/or non-steroid factors such as neurotransmitters on olfactory processing. Such modulation frequently augments or facilitates the effects that prevailing social and environmental conditions have on the reproductive axis. The best example is the pregnancy block effect(Bruce effect), caused by testosterone-dependent major urinary proteins(MUPs) in male mouse urine. Intriguingly, mouse GnRH neurons receive pheromone signals from both odor and pheromone relays in the brain and may also receive common odor signals. Though it is quite controversial, recent studies reveal a complex interplay between reproduction and other functions in which GnRH neurons appear to integrate information from multiple sources and modulate a variety of brain functions.

  • PDF

Expression of Yippee-Like 5 (YPEL5) Gene During Activation of Human Peripheral T Lymphocytes by Immobilized Anti-CD3 (인체 말초혈액의 활성화 과정 중 yippee-like 5 (YPEL5) 유전자의 발현 양상)

  • Jun, Do-Youn;Park, Hye-Won;Kim, Young-Ho
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1641-1648
    • /
    • 2007
  • Yippee-like proteins, which have been identified as the homolog of Drosophila yippee protein containing a zinc-finger domain, are known to be highly conserved among eukaryotes. However, their functional roles are still poorly understood. Recently we initiated ordered differential display (ODD)-polymerase chain reaction (PCR) to isolate genes of which expressions are altered following activation of human T cells. On the ODD-PCR image, one PCR-product detected in unstimulated T cells was not detectable at the time when the activated T cells traversed near $G_1/S$ boundary following activation by immobilized anti-CD3. Cloning and nucleotide sequence analysis revealed that the PCR-product was yippee-like 5 (YPEL5) gene, which was known as a human homolog of the Drosophila yippee gene. Northern blot analysis confirmed the amount of ${\sim}2.2$ kb YPEL5 mRNA expression detectable in unstimulated T cells was sustained until 1.5 hr after activation and then rapidly declined to undetectable level by 5 hr. Ectopic expression of YPEL5 gene in human cervix epitheloid carcinoma HeLa cells caused a significant reduction in cell proliferation to the level of 47% of the control. Expression of GFP-YPEL5 fusion protein in HeLa cells showed its nuclear localization. These results demonstrated that the expression level of human YPEL5 mRNA was negatively regulated in the early stage of T cell activation, and suggested that YPEL5 might exert an inhibitory effect on the cell proliferation as a nuclear protein.