• Title/Summary/Keyword: 판-폭두께비

Search Result 65, Processing Time 0.022 seconds

Initial Imperfection and Axial Strength of Struts with Octagonal Hollow Section fabricated from HR Plate (열연강판 팔각강관 버팀보의 초기편심과 축방향 압축강도)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Developed in this study were Octagonal-hollow-section(OHS) struts, whose compressive strengths against flexural and local buckling is higher than H-shape or rectangular-hollow-section(RHS) struts with the same unit weight. OHS members are also advantageous in handling and storing compared to circular hollow sections(CHS). OHS members were fabricated from HR Plates by cold forming and fillet welding. 5 numbers of 20m long OHS struts were assembled, each of which consist of two 9.6m long OHS member and two end connection elements made of cast iron. The compressive strength of the OHS strut was evaluated by comparing the test results, design codes and FEM analysis each other. Test results show that all of the struts have almost same or larger compressive strength than Korean Road Bridge Design Code(KRBDC) (2012). The initial imperfections can be estimated by using measured strains and are turned out to be less than L/450 for all the struts tested. The results of FEM analysis show that the variation of initial imperfection has less effects on the compressive strength for struts with vertical surcharge than for those with self-weight only, while the strength decreases as the initial imperfection increases. As the result of this study, the allowable initial imperfection for 20m long OHS struts is recommended to be less than L/350 on job sites.

Fundamental Studies on the Net-Shape of the Drag Net-II On the Section Shape of the Simplified Model of the Bag Net in Four-Point Suspension (저예망의 어구형상에 관한 기초적 연구-II 단순화모형에 의한 4폭짜리 자루그물의 단면형상)

  • Lee, Ju-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.65-71
    • /
    • 1984
  • As a primary step in studying the relationship between the arrangement of netting and the section shape of the bag net in the four-seam trawling net, a series of experiments were performed with the simplified model of the bag net made of vinyl film. This model was suspended horizontally in circularly flowing water, with two pairs of suspending threads to four points of symetry at the border of the bag mouth in place of both wing nets. And then, the area distribution of each panel in the bag net was arranged by the portion of the length of the side panel, q to that of the lower or upper panel, p at the border of bag mouth. In the experiments, the section shape of the bag mouth photographed and the tensions on both pairs of suspending threads were measured with two loadcells in circularly flowing water. From the results that the section shape of the bag mouth in circularly flowing water is controlled by the area distribution of panels in the bag net, the author estimated an experimental equation. h/w=k sub(1) e super(k) 2 super(q/p)+C, where h is the central height of the bag mouth, and w is the lateral width of that.

  • PDF

A Study on Real-Time Defect Detection Using Ultrasound Excited Thermography (초음파 서모그라피를 이용한 실시간 결함 검출에 대한 연구)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Jung, Hyun-Kyu;Kim, Seung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.211-219
    • /
    • 2006
  • The UET(ultrasound excited thermography) for the ,eat-time diagnostics of the object employs an infrared camera to image defects of the surface and subsurface which are locally heated using high-frequency putted ultrasonic excitation. The dissipation of high-power ultrasonic energy around the feces of the defects causes an increase In temperature. The defect's image appears as a hot spot (bright IR source) within a dark background field. The UET for nondestructive diagnostic and evaluation is based on the image analysis of the hot spot as a local response to ultrasonic excited heat deposition. In this paper the applicability of VET for fast imaging of defect is described. The ultrasonic energy is injected into the sample through a transducer in the vertical and horizontal directions respectively. The voltage applied to the transducer is measured by digital oscilloscope, and the waveform are compared. Measurements were performed on four kinds of materials: SUS fatigue crack specimen(thickness 14mm), PCB plate(1.8 mm), CFRP plate(3 mm) and Inconel 600 plate (1 mm). A high power ultrasonic energy with pulse durations of 250ms Is injected into the samples in the horizontal and vertical directions respectively The obtained experimental result reveals that the dissipation loss of the ultrasonic energy In the vertical injection is less than that in the horizontal direction. In the cafe or PCB, CFRP, the size of hot spot in the vortical injection if larger than that in horizontal direction. Duration time of the hot spot in the vertical direction is three times as long as that in the horizontal direction. In the case of Inconel 600 plate and SUS sample, the hot spot in the horizontal injection was detected faster than that in the vertical direction

Protection effect of metal balls against high energy photon beams (고에너지 광자선에 대한 금속구의 차폐효과)

  • 강위생;강석종
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.137-141
    • /
    • 1998
  • The purposes of this report are to evaluate whether lead ball and steel ball could be used as protective material of radiation and to acquire physical data of them for protecting 4-10 MV X-ray beams. Lead balls of diameter 2.0~2.5mm or steel balls of diameter 1.5~2.0 mm were filled in an acrylic box of uniform width. An MV radiograph of metal balls in a box were taken to ascertain uniformity of ball distribution in the box. Average density of metal ball and linear attenuation coefficient of metal balls for 4~10 MV X -rays were measured. At the time of measurement of linear attenuation coefficient, Farmer ionization chamber was used and to minimize the scatter effect, distance between the ball and the ionization chamber was 70 cm and field size was 5.5cm${\times}$5.5cm. For comparison, same parameters of lead and steel plates were measured. The distribution of metal balls was uniform in the box. The density of a mixture of lead-air was 6.93g/cm$^3$, 0.611 times density of lead, and the density of a mixture of steel-air was 4.75g/cm$^3$, 0.604 times density of steel. Half-value layers of a mixture of lead-air were 1.89 cm for 4 MV X-ray, 2.07 cm for 6 MV X-ray and 2.16 cm for 10 MV X-ray, and approximately 1.64 times of HVL of lead plate. Half-value layers of a mixture of steel-air were 3.24 cm for 4 MV X-ray, 3.70 cm for 6 MV X-ray and 4.15 cm for 10 MV X-ray, and approximately 1.65 times of HVL of lead plate. Metal balls can be used because they could be distributed evenly. Average densities of mixtures of lead-air and steel-air were 6.93g/cm$^3$, 4.75g/cm$^3$ respectively and approximately 1.65 times of densities of lead and steel. Product of density and HVL for a mixture of metal-air are same as the metal.

  • PDF

Air Cavity Effects on the Absorbed Dose for 4-, 6- and 10-MV X-ray Beams : Larynx Model (4-, 6-, 10-MV X-선원에서 공기동이 흡수선량에 미치는 효과 : 후두모형)

  • Kim Chang-Seon;Yang Dae-Sik;Kim Chul-Yong;Choi Myung-Sun
    • Radiation Oncology Journal
    • /
    • v.15 no.4
    • /
    • pp.393-402
    • /
    • 1997
  • Purpose : When an x-ray beam of small field size is irradiated to target area containing an air cavity, such as larynx, the underdosing effect is observed in the region near the interfaces of air and soft tissue. With a larynx model, air cavity embedded in tissue-equivalent material, this study is intonded for examining Parameters, such as beam quality, field size, and cavity size, to affect the dose distribution near the air cavity. Materials and Methods : Three x-rar beams, 4-, 6- and 10-MV, were employed to Perform a measurement using a 2cm $(width){\times}L$ (length in cm, one side of x-ray field used 2cm (height) air cavity in the simulated larynx. A thin window parallel-plate chamber connected to an electrometer was used for a dosimetry system. A ratio of the dose at various distances from the cavity-tissue interface to the dose at the same points in a homogeneous Phantom (ebservedlexpected ratio, O/E) normalized buildup curves, and ratio of distal surface dose to dose at the maximum buildup depth were examined for various field sizes. Measurement for cavity size effect was performed by varying the height (Z) of the air cavity with the width kept constant for several field sizes. Results : No underdosing effect for 4-MV beam for fields larger than $5cm\times5cm$ was found For both 6- and 10-MV beams, the underdosing portion of the larynx at the distal surface was seen to occur for small fields, $4cm\times4cm\;and\;5cm\times5cm$. The underdosed tissue was increased in its volume with beam energy even for similar surface doses. The relative distal surface dose to maximum dose was changed to 0.99 from 0.95, 0.92, and 0.91 for 4-, 6-, and 10-MV, respectively, with increasing field size, $4cm\times4cm\;to\;8cm\times8cm$, For 6- and 10-MV beams, the dose at the surface of the cavity is measured less than the predicted by about two and three percent. respectively. but decrease was found for 4-MV beam for $5cm\times5cm$ field. For the $4cm\timesL\timesZ$ (height in cm). varying depth from 0.0 to 4.8cm, cavity, O/E> 1.0 was observed regardless of the cavity size for any field larger than about $8cm\times8cm$. Conclusion : The magnitude of underdosing depends on beam energy, field size. and cavity size for the larynx model. Based on the result of the study. caution must be used when a small field of a high quality x-ray beam is irradiated to regions including air cavities. and especially the region where the tumor extends to the surface. Low quality beam. such as. 4-MV x-ray, and larger fields can be used preferably to reduce the risk of underdosing, local failure. In the case of high quality beams such as 6- and 10-MV x-rays, however. an additional boost field is recommended to add for the compensation of the underdosing region when a typically used treatment field. $8cm\times8cm$, is employed.

  • PDF