• Title/Summary/Keyword: 판요소법

Search Result 407, Processing Time 0.023 seconds

Study on Bursting Stress in Anchorage Zone of Prestressed Concrete Using Circular Anchorages (원형 정착구를 적용한 프리스트레스트 콘크리트 정착구역의 파열력에 관한 연구)

  • Choi, Kyu-Hyung;Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.3-12
    • /
    • 2015
  • Bursting stress in anchorage zone of post tension girder can be estimated based on Guyon's equation. The major parameters in calculating bursting stress are prestressing force and the distance ratio between concrete edge and anchorage plate. Although Guyon's equation can be applied to calculate bursting stress for rectangular typed as well as circular typed plate, there is some limitation of accuracy due to 2 dimensional analysis. Therefore this study is proposed to suggest a bursting stress equation based on 3 dimensional finite element method.

Investigating the Spatial Focusing Performance of Time Reversal Lamb waves for Impact Localization on a Plate (판의 충격위치 추정을 위한 시간반전 램파의 공간모임성능 규명)

  • Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.418-429
    • /
    • 2011
  • Researches using time reversal acoustics (TRA) for impact localization have been paid attention to recently. Dispersion characteristics of Lamb waves, which restrict the utility of classical nondestructive evaluation based on time-of-flight information, can be compensated through the application of TRA to Lamb waves on a plate. This study investigates the spatial focusing performance of time reversal Lamb waves on a plate using finite element analysis. In particular, the virtual sensor effect caused by multiple wave reflections at the boundaries of the plate is shown to enable the spatial focusing of Lamb waves though a very small number of surface-bonded piezoelectric (PZT) sensors are available. The time window size of forward response signals, are normalized with respect to the number of virtual active sensors. Then their effects on the spatial focusing performance of Lamb waves are investigated.

  • PDF

Numerical Sloshing Analysis of LNG Carriers in Irregular Waves (실해역 상태를 고려한 LNG 선박의 SLOSHING 해석)

  • Park Jong Jin;Kim Mun Sung;Kim Young Bok;Ha Mun Keun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.38-43
    • /
    • 2005
  • The present study is concerned with the numerical analysis of the sloshing impact pressure of the Liquefied Natural Gas (LNG) carriers in rough sea. The reliable predictions of the both random tank motions in irregular waves and violent fluid flow in the LNG tanks are required for practical sloshing analysis procedure of LNG carriers. The three-dimensional numerical model adopting SOLA-VOF scheme is used to predict violent free surface movements of LNG tank in irregular motions. For accurate input motion of tank, a three-dimensional panel method program called SSMP (Samsung Ship Motion Program) is applied for seakeeping analysis. Comparison studies of sloshing analysis are carried out for No.2 tank of 138K and 205K LNG carriers to verify the safety of the LNG containment system of the proposed 205K large LNG carrier.

  • PDF

A Study on the Heat Source Equation for the Thermal Effect Analysis of Guss Asphalt Pavement (구스 아스팔트의 열 영향 해석을 위한 열원방정식에 관한 연구)

  • Park, Hyun-Woong;Lee, Wan-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.96-102
    • /
    • 2019
  • The study of thermal effect on the structure is carried out in the case of Guss asphalt which is paved at the temperature of $240^{\circ}C$ or higher in the bridge pavement of the steel deck bridges. However, studies on the heat source data applicable to numerical analysis are insufficient, the temperature load is used as a joint load. In this study, the heat source equations that can be directly loaded on the plate elements, although limited, are presented using the measured temperature data in the Guss asphalt pavement and its validity is confirmed by a brief numerical analysis.

Life Prediction of Composite Pressure Vessels Using Multi-Scale Approach (멀티 스케일 접근법을 이용한 복합재 압력용기의 수명 예측)

  • Jin, Kyo-Kook;Ha, Sung-Kyu;Kim, Jae-Hyuk;Han, Hoon-Hee;Kim, Seong-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3176-3183
    • /
    • 2010
  • A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The multi-scale fatigue life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multi-axial fatigue loading acting at laminate is determined from finite element analysis of composite pressure vessel, and ply stresses are computed using a classical laminate theory. The micro stresses are calculated in each constituent from ply stresses using a micromechanical model. Three methods are employed in predicting fatigue life of each constituent, i.e. a maximum stress method for fiber, an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner's rule. Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent, fiber volume fraction and manufacturing winding angle.

Prediction of Unsteady Performance of a Propeller by Using Potential-Based Panel Method (포텐셜을 기저로 한 패널법에 의한 프로펠러의 비정상유동해석)

  • I.S. Moon;Y.G. Kim;C.S. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.9-18
    • /
    • 1996
  • This paper describes a potential-based panel method for the prediction of unsteady performance of a marine propeller operating in a non-uniform flow field. Boundary-value problem, formulated by distributing the normal dipoles and sources on the blade, the hub and the shed wake, is descretized and numerically analyzed in a discretized time domain. Through an extensive test and comparison with the analytic solution, the convergence in time step is verified for a two-dimensional foil. Unsteaty analysis is then carried out for the DTRC 4118 propeller operating in a harmonic wake, and compared favorably with the experimental result. The present method is shown applicable to the analysis of unsteady performance of the propellers.

  • PDF

Study on Ultimate Behavior of Steel Transmission Tower with Residual Stress and Initial Imperfection (잔류응력과 초기변형을 고려한 송전철탑의 비선형 극한거동에 관한 해석적 연구)

  • Chang, Jin Won;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.421-435
    • /
    • 2008
  • This paper presents an investigation on the ultimate behavior of a transmission tower using nonlinear analyses inconsideration of residual stress and initial imperfection. Main members, such as main post, horizontal member and diagonal member of the transmission tower were modeled using beam element. Moreover, submembers of the transmission tower were modeled using truss element. ABAQUS (2004) program was used to perform finite element analyses. Initial condition options of the ABAQUS program considering initial stress and imperfection were used in this study. Before performing the analysis of the total transmission tower, simple angle section models using beam or plate/shell element w ere investigated to verify the appropriateness of ABAQUS analysis models and options. According to the verification results, the beam element was used for nonlinear analyses of the transmission tower. From nonlinear analyses results, buckling failure was in the main member of the leg part because of ${P-{\triangle}}$ effect at that point. Also, this paper includes significant results to define real structural failure modes and quantitative values. This study should be used in the development of a reasonable and economic design method for transmission towers.

Prediction of Effective Properties of Laminated Plain Weave Textile Composites (적층각을 가지는 평직복합재료 적층판의 등가물성치 예측)

  • U,Gyeong-Sik;Seo,Yeong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.10-20
    • /
    • 2003
  • In this study, the effective properties were numerically calculated for laminated plain weave textile composites with arbitrary s tacking orientation angles. A single-field macroelement with modified sub-domain integration was used in the analysis to reduce computer resource requirement while efficiently accounting for the internal microstructure. A sample calculation procedure based on the Monte Carlo method was employed to consider the random shift between the layers. Results showed that a significant deviation occurred when the orientation angles were near 0 deg for extensional modulus and Poisson's ratio and 45 deg for the shear modulus. It was also found that the average properties calculated by the 2-layer numerical specimen had large differences compared to the CLT results, which indicated that a caution must be needed when designig of thin plain weave composite structures.

Design Improvement on Wind Turbine Blade of Medium Scale HAWT by Considering IEC 1400-1 Specification (IEC1400-1 규격을 고려한 중형 수평축 풍력발전용 회전날개의 설계개선 연구)

  • 공창덕;정석훈;장병섭;방조혁
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.29-37
    • /
    • 2000
  • Because the previous design procedure for the composite wind turbine blade structure using trial and error method takes long time, a improved design procedure by using the program based on classical laminate theory was proposed to reduce the inefficient element. According to the improved design procedure, limitation of strains, stresses and displacements specified by international standard specification IEC1400-1 for the composite wind turbine blade were applied to sizing the structural configuration by using the rule of mixture and the principal stress design technique with a simplified turbine blade. Structural safety for strength and buckling stability was confirmed by the developed analysis program based on the laminate theory to minimize the design procedure. After modifying the preliminary design result with additional structural components such as skin, foam sandwich and mounting joints, stresses, strains, displacements, natural frequency, buckling load and fatigue life were analyzed by the finite element method. Finally these results were confirmed by comparing with IEC1400-1 specification.

  • PDF

Spectral Element Formulation for Analysis of Lamb Wave Propagation on a Plate Induced by Surface Bonded PZT Transducers (표면 부착형 PZT소자에 의해 유발된 판 구조물의 램파 전달 해석을 위한 스펙트럼 요소 정식화)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Kang, Joo-Sung;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1157-1169
    • /
    • 2008
  • This paper presents spectral element formulation which approximates Lamb wave propagation by PZT transducers bonded on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by a piezoelectric (PZT) layer rigidly bonded on a base plate. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Euler-Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with the electro-mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are obtained through equations of motions converted into frequency domain. Detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through numerical examples.