• Title/Summary/Keyword: 판별인식

Search Result 552, Processing Time 0.027 seconds

Identification and Chromosomal Reshuffling Patterns of Soybean Cultivars Bred in Gangwon-do using 202 InDel Markers Specific to Variation Blocks (변이영역 특이 202개 InDel 마커를 이용한 강원도 육성 콩 품종의 판별 및 염색체 재조합 양상 구명)

  • Sohn, Hwang-Bae;Song, Yun-Ho;Kim, Su-Jeong;Hong, Su-Young;Kim, Ki-Deog;Koo, Bon-Cheol;Kim, Yul-Ho
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.396-405
    • /
    • 2018
  • The areas of soybean (Glycine max (L.) Merrill) cultivation in Gangwon-do have increased due to the growing demand for well-being foods. The soybean barcode system is a useful tool for cultivar identification and diversity analysis, which could be used in the seed production system for soybean cultivars. We genotyped cultivars using 202 insertion and deletion (InDel) markers specific to dense variation blocks (dVBs), and examined their ability to identify cultivars and analyze diversity by comparison to the database in the soybean barcode system. The genetic homology of "Cheonga," "Gichan," "Daewang," "Haesal," and "Gangil" to the 147 accessions was lower than 81.2%, demonstrating that these barcodes have potentiality in cultivar identification. Diversity analysis of one hundred and fifty-three soybean cultivars revealed four subgroups and one admixture (major allele frequency <0.6). Among the accessions, "Heugcheong," "Hoban," and "Cheonga" were included in subgroup 1 and "Gichan," "Daewang," "Haesal," and "Gangil" in the admixture. The genetic regions of subgroups 3 and 4 in the admixture were reshuffled for early maturity and environmental tolerance, respectively, suggesting that soybean accessions with new dVB types should be developed to improve the value of soybean products to the end user. These results indicated that the two-dimensional barcodes of soybean cultivars enable not only genetic identification, but also management of genetic resources through diversity analysis.

Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary (주가지수 방향성 예측을 위한 주제지향 감성사전 구축 방안)

  • Yu, Eunji;Kim, Yoosin;Kim, Namgyu;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.95-110
    • /
    • 2013
  • Recently, the amount of unstructured data being generated through a variety of social media has been increasing rapidly, resulting in the increasing need to collect, store, search for, analyze, and visualize this data. This kind of data cannot be handled appropriately by using the traditional methodologies usually used for analyzing structured data because of its vast volume and unstructured nature. In this situation, many attempts are being made to analyze unstructured data such as text files and log files through various commercial or noncommercial analytical tools. Among the various contemporary issues dealt with in the literature of unstructured text data analysis, the concepts and techniques of opinion mining have been attracting much attention from pioneer researchers and business practitioners. Opinion mining or sentiment analysis refers to a series of processes that analyze participants' opinions, sentiments, evaluations, attitudes, and emotions about selected products, services, organizations, social issues, and so on. In other words, many attempts based on various opinion mining techniques are being made to resolve complicated issues that could not have otherwise been solved by existing traditional approaches. One of the most representative attempts using the opinion mining technique may be the recent research that proposed an intelligent model for predicting the direction of the stock index. This model works mainly on the basis of opinions extracted from an overwhelming number of economic news repots. News content published on various media is obviously a traditional example of unstructured text data. Every day, a large volume of new content is created, digitalized, and subsequently distributed to us via online or offline channels. Many studies have revealed that we make better decisions on political, economic, and social issues by analyzing news and other related information. In this sense, we expect to predict the fluctuation of stock markets partly by analyzing the relationship between economic news reports and the pattern of stock prices. So far, in the literature on opinion mining, most studies including ours have utilized a sentiment dictionary to elicit sentiment polarity or sentiment value from a large number of documents. A sentiment dictionary consists of pairs of selected words and their sentiment values. Sentiment classifiers refer to the dictionary to formulate the sentiment polarity of words, sentences in a document, and the whole document. However, most traditional approaches have common limitations in that they do not consider the flexibility of sentiment polarity, that is, the sentiment polarity or sentiment value of a word is fixed and cannot be changed in a traditional sentiment dictionary. In the real world, however, the sentiment polarity of a word can vary depending on the time, situation, and purpose of the analysis. It can also be contradictory in nature. The flexibility of sentiment polarity motivated us to conduct this study. In this paper, we have stated that sentiment polarity should be assigned, not merely on the basis of the inherent meaning of a word but on the basis of its ad hoc meaning within a particular context. To implement our idea, we presented an intelligent investment decision-support model based on opinion mining that performs the scrapping and parsing of massive volumes of economic news on the web, tags sentiment words, classifies sentiment polarity of the news, and finally predicts the direction of the next day's stock index. In addition, we applied a domain-specific sentiment dictionary instead of a general purpose one to classify each piece of news as either positive or negative. For the purpose of performance evaluation, we performed intensive experiments and investigated the prediction accuracy of our model. For the experiments to predict the direction of the stock index, we gathered and analyzed 1,072 articles about stock markets published by "M" and "E" media between July 2011 and September 2011.