• Title/Summary/Keyword: 판별인식

Search Result 552, Processing Time 0.03 seconds

Fake Discrimination using Time Information in CNN-based Signature Recognition (CNN 기반 서명인식에서 시간정보를 이용한 위조판별)

  • Choi, Seouing-Ho;Jung, Sung Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.293-294
    • /
    • 2017
  • 본 논문에서는 CNN 기반 서명인식에서 시간정보를 이용하여 위조서명을 보다 정확하게 판별하는 방법을 제안한다. 시간정보를 이용하는 첫 번째 방법은 서명하는 전체 시간을 동일한 개수의 등 간격으로 나누어 각각의 이미지를 얻고 이를 합성하여 이용하는 방법이다. 두 번째 방법은 동일한 개수의 등 간격으로 나누어진 각각의 이미지를 CNN-LSTM 으로 판별하는 방법이다. 동일한 개수의 등 간격으로 나누어진 이미지들에는 서명의 속도에 따른 모양의 차이가 발생하기 때문에 비록 최종 서명의 모양이 원본과 매우 유사하다고 하더라도 속도가 다른 경우 위조임을 판별할 수 있다. 두 명의 서명에 대하여 실험을 한 결과 최종 서명이 매우 유사하더라도 속도가 다른 경우 위조로 판별할 수 있음을 보였다. 다만 이미지 합성 과정에 만들어진 새로운 정보로 인하여 진짜 서명을 가짜로 판별할 수 있는 가능성도 늘어날 수 있음을 확인하였다.

  • PDF

Design and Implementation Automatic Character Set Encoding Recognition Method for Document File (문서 파일의 문자 인코딩 자동 인식 기법의 설계 및 구현)

  • Seo, Min-Ji;Kim, Myung-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.95-98
    • /
    • 2015
  • 문자 인코딩은 컴퓨터에 저장하거나 네트워크상에서 전송하기 위해 문서를 이진화 하는 방법이다. 문자 인코딩은 고유의 문자 코드 테이블을 이용하여 문서를 이진화 하기 때문에, 문서에 적용된 문자 인코딩과 다른 문자 인코딩을 이용하여 디코딩 하면 원본과 다른 문서가 출력되어 문서를 읽을 수 없게 된다. 따라서 문서를 읽기 위해서는 문서에 적용된 문자 인코딩을 알아내야 한다. 본 논문에서는 문서의 문자 인코딩을 자동으로 판별하는 방법을 제시한다. 제안하는 방법은 이스케이프 문자를 이용한 판별법, 문서에 나타난 코드 값 범위 판별법, 문서에 나타난 코드 값의 특징 판별법, 단어 데이터베이스를 이용한 판별법과 같은 여러 단계를 걸쳐 문서에 적용된 문자 인코딩을 판별한다. 제안하는 방법은 문서를 언어별로 분류하여 문자 인코딩을 판별하기 때문에, 높은 문자 인코딩 인식률을 보인다.

A Method for Automatic Detection of Character Encoding of Multi Language Document File (다중 언어로 작성된 문서 파일에 적용된 문자 인코딩 자동 인식 기법)

  • Seo, Min Ji;Kim, Myung Ho
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.4
    • /
    • pp.170-177
    • /
    • 2016
  • Character encoding is a method for changing a document to a binary document file using the code table for storage in a computer. When people decode a binary document file in a computer to be read, they must know the code table applied to the file at the encoding stage in order to get the original document. Identifying the code table used for encoding the file is thus an essential part of decoding. In this paper, we propose a method for detecting the character code of the given binary document file automatically. The method uses many techniques to increase the detection rate, such as a character code range detection, escape character detection, character code characteristic detection, and commonly used word detection. The commonly used word detection method uses multiple word database, which means this method can achieve a much higher detection rate for multi-language files as compared with other methods. If the proportion of language is 20% less than in the document, the conventional method has about 50% encoding recognition. In the case of the proposed method, regardless of the proportion of language, there is up to 96% encoding recognition.

Analysis of Quad Phase Only Filter for Optical Pattern Classification (광패턴인식을 위한 Quad Phase Only Filter의 분석)

  • 정창규
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.177-180
    • /
    • 1991
  • 본 연구는 광 패턴 인식을 위한 사진 위상 필터(QPOG)를 분석하였다. 사진 위상 필터를 이용하여 광 패턴 인식을 한 경우 특정한 패턴에 대해서는 판별력이 뛰어나지만 한 패턴이 다른 패턴의 부분 패턴이 되면 판별력이 떨어짐을 알 수 있었다.

  • PDF

Data Mixing Augmentation Method for Improving Fake Fingerprint Detection Rate (위조지문 판별률 향상을 위한 학습데이터 혼합 증강 방법)

  • Kim, Weonjin;Jin, Cheng-Bin;Liu, Jinsong;Kim, Hakil
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.305-314
    • /
    • 2017
  • Recently, user authentication through biometric traits such as fingerprint and iris raise more and more attention especially in mobile commerce and fin-tech fields. In particular, commercialized authentication methods using fingerprint recognition are widely utilized mainly because customers are more adopted and used to fingerprint recognition applications. In the meantime, the security issues caused by fingerprint falsification bring lots of attention. In this paper, we propose a new method to improve the performance of fake fingerprint detection using CNN(Convolutional Neural Network). It is common practice to increase the amount of learning data by using affine transformation or horizontal reflection to improve the detection rate in CNN characteristics that are influenced by learning data. However, in this paper we propose an effective data augmentation method based on the database difficulty level. The experimental results confirm the validity of proposed method.

Posture features and emotion predictive models for affective postures recognition (감정 자세 인식을 위한 자세특징과 감정예측 모델)

  • Kim, Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.83-94
    • /
    • 2011
  • Main researching issue in affective computing is to give a machine the ability to recognize the emotion of a person and to react it properly. Efforts in that direction have mainly focused on facial and oral cues to get emotions. Postures have been recently considered as well. This paper aims to discriminate emotions posture by identifying and measuring the saliency of posture features that play a role in affective expression. To do so, affective postures from human subjects are first collected using a motion capture system, then emotional features in posture are described with spatial ones. Through standard statistical techniques, we verified that there is a statistically significant correlation between the emotion intended by the acting subjects, and the emotion perceived by the observers. Discriminant Analysis are used to build affective posture predictive models and to measure the saliency of the proposed set of posture features in discriminating between 6 basic emotional states. The evaluation of proposed features and models are performed using a correlation between actor-observer's postures set. Quantitative experimental results show that proposed set of features discriminates well between emotions, and also that built predictive models perform well.

Low Resolution Face Recognition with Photon-counting Linear Discriminant Analysis (포톤 카운팅 선형판별법을 이용한 저해상도 얼굴 영상 인식)

  • Yeom, Seok-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.64-69
    • /
    • 2008
  • This paper discusses low resolution face recognition using the photon-counting linear discriminant analysis (LDA). The photon-counting LDA asymptotically realizes the Fisher criterion without dimensionality reduction since it does not suffer from the singularity problem of the fisher LDA. The linear discriminant function for optimal projection is determined in high dimensional space to classify unknown objects, thus, it is more efficient in dealing with low resolution facial images as well as conventional face distortions. The simulation results show that the proposed method is superior to Eigen face and Fisher face in terms of the accuracy and false alarm rates.

Hangul Recognition Using The Path Following Algorithm (Path Following 에 의한 자모추출 한글인식 Algorithm)

  • Hwang, To-Chan;Kim, Sung-Shick
    • IE interfaces
    • /
    • v.3 no.2
    • /
    • pp.53-62
    • /
    • 1990
  • 본 연구는 컴퓨터에 의한 인쇄체 한글의 인식방법을 제안하고 있다. 일반적인 인식방법에서는 세선화과정 후의 이미지를 처리하고 있으나, 본 연구는 이 과정을 거치지 않고 원 이미지로부터 직업 패턴점들을 찾아내고, 이들을 이용하여 획을 결정하고 자모를 분리하였다. 문자 판별시에는 한글 의사 결정 나무(Decision-Tree)를 이용하여 자소를 분리하고 판별하였다. 본 연구는 자형에 관계없는 인식 방법을 제안 하였으므로 필기체 한글 인식에 기초를 제공하게 된다.

  • PDF

Speech Recognition on Korean Monosyllable using Phoneme Discriminant Filters (음소판별필터를 이용한 한국어 단음절 음성인식)

  • Hur, Sung-Phil;Chung, Hyun-Yeol;Kim, Kyung-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.31-39
    • /
    • 1995
  • In this paper, we have constructed phoneme discriminant filters [PDF] according to the linear discriminant function. These discriminant filters do not follow the heuristic rules by the experts but the mathematical methods in iterative learning. Proposed system. is based on the piecewise linear classifier and error correction learning method. The segmentation of speech and the classification of phoneme are carried out simutaneously by the PDF. Because each of them operates independently, some speech intervals may have multiple outputs. Therefore, we introduce the unified coefficients by the output unification process. But sometimes the output has a region which shows no response, or insensitive. So we propose time windows and median filters to remove such problems. We have trained this system with the 549 monosyllables uttered 3 times by 3 male speakers. After we detect the endpoint of speech signal using threshold value and zero crossing rate, the vowels and consonants are separated by the PDF, and then selected phoneme passes through the following PDF. Finally this system unifies the outputs for competitive region or insensitive area using time window and median filter.

  • PDF

A Study on Discriminant.Classification Model of Impact Factors about Understanding of Traffic Accident Causes and Acknowledgement to Decrease Traffic Accidents (교통사고 발생원인 인식과 감소대책 인지 영향요인 판별.분류에 관한 연구)

  • 고상선;배기목;이원규;정헌영
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.143-153
    • /
    • 2002
  • 본 연구는 교통사고의 발생원인에 대한 인식유형과 감소대책에 대한 인지 유형별 영향요인의 정도를 분석하기 위하여 수량화이론 II류와 CHAID 분석법을 이용하여 분류모델과 판별모델을 구축하였다. 수량화이론 II류에 의한 교통사고 발생원인에 대한 인식 유형별 영향요인 판별모델은 전체 적중률이 78.4%로 매우 높게 나타났다. 편상관계수는 설명변수의 항목 중 학력, 성별, 운전경력 년 수, 소유 차종의 순으로 영향을 미치고 외적 변수인 교통사고 발생원인에 대한 유형에서는 기여 정도가 교통단속 부재 > 교통체계 미비 > 승용차 과다 사용 >잘못된 의식 때문의 순으로 나타났다. 교통사고 감소 대책에 대한 인지유형별 영향요인 판별모델은 전체 적중률이 59.9%로 높게 나타났으며, 편상관 계수는 학력, 성별, 운전경력 연수, 연령의 순으로 영향을 미치고 있고, 외적 변수인 교통사고 감소 대책에 대한 유형에서는 기여 정도가 교통단속 강화 > 대중교통수단 이용 유도 > 교통체계 개선 > 의식 개혁의 순으로 나타났다. 또한 CHAID 분석법에 의한 교통사고 발생원인에 대한 인식 유형별 영향요인 분류모델에 있어서는 예측변수로 학력, 연령, 성별, 통행수단의 네 가지 변수가, 교통사고의 감소 대책에 대한인지 유형별 영향요인 분류모델에 있어서는 학력, 운전경력 연수, 성별 그리고 통행수단의 네 가지 변수가 카이제곱 통계량 이 5%의 유의수준에서 유의한 것으로 판단되었다. 교통사고 발생원인 인식과 감소 대책의 인지 유형에 대한 빈도분석과 교차분석은 의식과 관련한 유형이 가장 높게 나타났으나 판별.분류모델에서는 교통단속과 관련한 유형이 기여 정도가 높고 의식 관련 유형이 상대적으로 낮게 나타나는 등 반대양상을 보이고 있어 심리적으로 내재되어 있고 표면에 잘 드러나지 않았던 의식 수준의 낮음이 분류모델을 통해서 명확하게 드러났다.