• Title/Summary/Keyword: 파형 열교환기

Search Result 8, Processing Time 0.022 seconds

Numerical Modeling for Air-Side Flow Characteristics of Fin-TUbe Heat Exchangers for Air-Conditioning Applications (공조용 핀-관 열교환기의 공기측 열유동특성에 대한 수치모사)

  • 김승택;최윤호
    • Journal of Energy Engineering
    • /
    • v.9 no.4
    • /
    • pp.309-318
    • /
    • 2000
  • 핀-관 열교환기의 효율을 증대시키기 위하여는 열저항을 결정하는 데 있어서 중요한 역할을 하는 공기측 열전달 특성의 향상이 필요하다. 본 연구에서는 핀-관 열교환기의 공리측 성능을 해석하기 위해서 3차원 비압축성 Navier-Stokes 코드를 개발하였으며 이 코드는 시간항에 스칼라 내재적 근사분해법(scalar implicit approximate factorization)절차, 공간항에 유한체적법과 2차의 풍상차분법(upwind differencing)을 사용한다. 서로 다른 3개의 핀형상(평판핀, 슬릿핀, 파형핀)을 고려하였고 이들의 유동 및 열전달 특성을 연구하였다.

  • PDF

Fluid Flow in the Fluidized Bed Shell and Tube Type Heat Exchanger with Corrugated Tubes (파형관 튜브가 있는 순환유동층 원통다관형 열교환기 내의 유체유동)

  • 안수환;이병창;배성택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.406-412
    • /
    • 2003
  • An experimental study was carried on the characteristics of fluid flow and heat transfer in a fluidized bed shell-and-tube type heat exchanger with corrugated tubes. Seven different solid particles having same volume were circulated in the tubes. The effects of various parameters such as water flow rates, particle geometries and materials, and geometries of corrugated tubes on relative velocities and drag coefficients were investigated. The present work showed that the drag force coefficients of particles in the corrugated tubes were usually lower than those in the smooth tubes, meanwhile the relative velocities between particles and water in the corrugated tubes were little higher than those in the smooth tubes except the glass.

A Study of Dust Effect on Performance of Heat Exchangers with Louver and Wavy Fins (루버형과 파형핀 열교환기에서 분진이 성능에 미치는 영향에 관한 연구)

  • Lee, Young-Lim;Hwang, Soon-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.126-132
    • /
    • 2009
  • Automotive heat exchangers use louver fins for their high efficiency. However, the efficiency can significantly drop for constructional vehicles or heavy equipments due to dust deposited on the louver fins with narrow slits. Thus it is necessary to develop new fins that lead to less fouling, so that a better performance can be achieved after exposure to a dusty environment over long period of time. New wavy fins were considered in the study and numerically analysed to compare with louver fins in the areas of air-side pressure drop, heat release rate, and particulate deposition. In addition, an experiment was done on the pressure drop and the particulate deposition. The results showed that the wavy fins would be a better choice for long-term use due to the excellent dust-proof performance in comparison to louver fins, in spite of the initial inferior performance of heat release.

Heat Flow Characteristics on Type of Heat Transfer Plate for White Smoke Reduction under Uniform Flow Condition (균일유동에서 백연저감용 전열판 형태에 대한 열유동 특성)

  • Son, Jun;Cha, Jae Min;Wang, Zhen Huan;Kwon, Young Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.591-596
    • /
    • 2016
  • Numerical analyses were performed on the heat flow characteristics of a heat transfer plate with six different shapes (basic, rectangle, triangle, wave type) to reduce the level of white smoke at a stack. In this study, to examine the heat transfer performance (heat transfer capacity, pressure drop, turbulence kinetic energy, heat transfer coefficient) on the heat transfer plates, simulations were conducted using the commercial computational fluid dynamics software, ANSYS CFX Ver.14 under uniform flow conditions. The thermal flow phenomenon in a channel with six heat transfer plates could be predicted adequately under uniform flow conditions. The heat transfer capacity, pressure drop, turbulence kinetic energy, and heat transfer coefficient were affected by the flow rate, aspect ratio and plate shape. These results provide guidelines to design an effective heat exchanger with the wave type to reduce white smoke.

A Study on the Thermal Performance of an Oil Cooler with Dual-cell Model (듀얼셀 모델을 이용한 오일쿨러의 방열성능 연구)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1111-1116
    • /
    • 2011
  • Heat exchangers have been used for the automotive, HVAC systems, and other various industrial facilities, so the market is very wide. In general, high-efficiency heat exchangers with louver fins are used in the dust-free environment while heat exchangers with wavy fins are used for dusty environment such as construction site, etc. In this study, numerical analysis has been performed for typical heat exchangers, used as oil coolers or fuel coolers, with dual cell model that can handle different grids for the air-side and oil-side of heat exchangers. First wind tunnel tests were conducted to obtain one-dimensional thermal performance data of heat exchangers. Then, heat release rates with varying air flows were numerically predicted using the three-dimensional dual-cell model. The model can greatly enhance the accuracy of thermal design since it includes the effects of nonuniformity of air flows across heat exchangers.

Heat Transfer in the Vertical Type Fluidized Bed Heat Exchanger with Corrugated Tubes (파형관을 갖는 수직형 순환유동층 열교환기의 열전달)

  • Ahn Soo Whan;Bae Sung Taek;Kim Myung Ho;Lee Byung-Chang;Lee Yoon Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1149-1155
    • /
    • 2004
  • An experimental study was performed to investigate the characteristics of heat transfer in a vertical type fluidized bed shell-and-tube type heat exchanger with corrugated tube. Seven different solid particles having the same volume were circulated in the heat of exchanger. The effects of various parameters such as water flow rates, particle geometries, materials, and corrugated tube geometries were investigated. The present work showed that the higher thermal capacities of materials and the geometries closer to the spherical one have higher heat transfer performances. In addition, heat transfer coefficients in the corrugated tubes were a little higher than those in the smooth tubes.

The Heat Transfer and Pressure Drop Characteristics on Microchannel PCHE with various Configurations (채널 형상에 따른 마이크로채널 PCHE의 열전달 및 압력강하 특성)

  • Kim, Yoon-Ho;Moon, Jung-Eun;Lee, Kyu-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.215-220
    • /
    • 2008
  • A microchannel PCHE is manufactured by the two technologies of micro photo-etching and diffusion bonding. In this paper, heat transfer and pressure drop characteristics by applying various configuration for the flow channel in the microchannel PCHE is experimentally investigated. The flow channel configurations are designed three types such as straight, wavy and offset strip channels. The performance experiment of each configuration is performed for Reynolds numbers in ranges of $100{\sim}700$ under various flow conditions for the hot side and the Reynolds number of cold side is fixed at 350. The inlet temperatures of the hot side and cold side are conducted as $40^{\circ}C$ and $20^{\circ}C$, respectively. The heat transfer performance of wavy channel, which was similar to that of offset strip channel, was much higher than that of straight channel. The effectiveness of wavy channel and offset strip channel was evaluated as about $0.5{\sim}0.9$. The pressure drop of wavy channel was highest among configurations and that of offset strip channel was lower than that of straight channel because the round curved surface of each strip edge was reduced the pressure loss.

  • PDF

Study on Exhaust Air Heat Transfer Characteristics of Heat Exchange System for White Smoke Reduction (백연 저감을 위한 열교환 시스템의 배기 열전달 특성에 관한 연구)

  • Wang, Zhen-Huan;Chun, Chong-Keun;Kwon, Young-Chul
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.739-744
    • /
    • 2018
  • In this study, effects of reducing white smoke at a heat exchange system for white smoke reduction were studied in the winter season. For this purpose, the heat transfer processes on the exhaust air were investigated by Solidworks. Five wave heat exchangers of air-to-air and air-to-water type were applied for the exhaust air heat recovery. The analytical condition of the exhaust air was fixed and the computational analysis was performed according to the change of SA(supply air) inlet velocities. In order to evaluate the performance of the heat exchange system for white smoke reduction, W(water)/SA recovered capacities and the temperature/absolute humidity reduction rate were calculated. As SA inlet velocity increased, the exit temperature and absolute humidity of the mixing zone were reduced by up to about $40^{\circ}C$ and 0.12kg/kg respectively. Also, W/SA recovered capacities increased linearly up to about 35%.