• Title/Summary/Keyword: 파일 필터링

Search Result 137, Processing Time 0.029 seconds

PIRS : Personalized Information Retrieval System using Adaptive User Profiling and Real-time Filtering for Search Results (적응형 사용자 프로파일기법과 검색 결과에 대한 실시간 필터링을 이용한 개인화 정보검색 시스템)

  • Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.21-41
    • /
    • 2010
  • This paper proposes a system that can serve users with appropriate search results through real time filtering, and implemented adaptive user profiling based personalized information retrieval system(PIRS) using users' implicit feedbacks in order to deal with the problem of existing search systems such as Google or MSN that does not satisfy various user' personal search needs. One of the reasons that existing search systems hard to satisfy various user' personal needs is that it is not easy to recognize users' search intentions because of the uncertainty of search intentions. The uncertainty of search intentions means that users may want to different search results using the same query. For example, when a user inputs "java" query, the user may want to be retrieved "java" results as a computer programming language, a coffee of java, or a island of Indonesia. In other words, this uncertainty is due to ambiguity of search queries. Moreover, if the number of the used words for a query is fewer, this uncertainty will be more increased. Real-time filtering for search results returns only those results that belong to user-selected domain for a given query. Although it looks similar to a general directory search, it is different in that the search is executed for all web documents rather than sites, and each document in the search results is classified into the given domain in real time. By applying information filtering using real time directory classifying technology for search results to personalization, the number of delivering results to users is effectively decreased, and the satisfaction for the results is improved. In this paper, a user preference profile has a hierarchical structure, and consists of domains, used queries, and selected documents. Because the hierarchy structure of user preference profile can apply the context when users perfomed search, the structure is able to deal with the uncertainty of user intentions, when search is carried out, the intention may differ according to the context such as time or place for the same query. Furthermore, this structure is able to more effectively track web documents search behaviors of a user for each domain, and timely recognize the changes of user intentions. An IP address of each device was used to identify each user, and the user preference profile is continuously updated based on the observed user behaviors for search results. Also, we measured user satisfaction for search results by observing the user behaviors for the selected search result. Our proposed system automatically recognizes user preferences by using implicit feedbacks from users such as staying time on the selected search result and the exit condition from the page, and dynamically updates their preferences. Whenever search is performed by a user, our system finds the user preference profile for the given IP address, and if the file is not exist then a new user preference profile is created in the server, otherwise the file is updated with the transmitted information. If the file is not exist in the server, the system provides Google' results to users, and the reflection value is increased/decreased whenever user search. We carried out some experiments to evaluate the performance of adaptive user preference profile technique and real time filtering, and the results are satisfactory. According to our experimental results, participants are satisfied with average 4.7 documents in the top 10 search list by using adaptive user preference profile technique with real time filtering, and this result shows that our method outperforms Google's by 23.2%.

A Recommender System using Case-based Reasoning with Implicit Rating Information (묵시적 평가정보를 이용한 사례기반추론 추천시스템)

  • 김병찬;옥수호;우용태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.139-141
    • /
    • 2002
  • 본 논문에서는 인터넷 컨텐츠 사이트에서 개인별로 컨텐츠를 효과적으로 추천하기 위한 개인화 시스템모델을 제안하였다. 제안한 모델은 묵시적인 평가정보를 이용한 사례기반추론 기법으로서 협동적필터링 기법과 달리 유사집단의 평가정보를 이용하지 않고 개인별 속성에 대한 가중치와 속성 값을 이용하여 추천하는 기법이다. 이 기법은 각 사용자의 상품 추매 속성을 추천에 반영할 수 있는 장점이 있으며 사용자 프로파일을 이용하여 개인화된 추천이 가능하다. 제안한 기법이 Recall, Precision, F-measure의 평가 방법을 통해 실험한 결과 협동적필터링 기법 보다 모든 부분에서 더 좋은 결과가 나왔음을 볼 수 있다. 그러므로 제안 시스템이 유사 사용자의 평가정보를 이용한 협동적필터링 기법보다 효율적인 개인화 전략이 가능하다고 말 수 있다. 본 제안 모델을 이용하여 일대일 마케팅을 위한 eCRM 시스템 개발이 가능하리라 예상된다.

  • PDF

A Study of IPTV-VOD Program Recommendation System using Collaborative Filtering (협업 필터링을 이용한 IPTV-VOD 프로그램 추천 시스템에 대한 연구)

  • Sun, Chul-Yong;Kang, Yong-Jin;Park, Kyu-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1453-1462
    • /
    • 2010
  • In this paper, a new program recommendation system is proposed to recommend user preferred VOD program in IPTV environment. A proposed system is implemented with collaborative filtering method. For a user profile which describes user program preference, a program preference, sub-genre preference, and US(user similarity) weight of the user neighborhood is averaged and updated every week. In order to evaluate system performance, real 24-weeks cable TV watching data provided by Nilson Research Corp. are modified to fit for IPTV broadcasting environment and the simulation result shows quite comparative quality of recommendation. The experimental results optimum performance when user similarity based weighting, five person per group and five recommendation programs are used.

Content-Based Filtering Using Representative Melody in Music Recommendation System (음악 추천 시스템에서 대표 선율을 이용한 내용 기반 필터링 기법)

  • 원재용;구경이;김유성
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.229-231
    • /
    • 2004
  • 내용 기반 음악 검색 시스템은 사용자가 원하는 음악에 대해 사전 정보를 모르더라도 곡의 일부로 질의를 함으로써 원하는 결과를 얻을 수 있게 한다. 그러나 내용 기반 음악 검색 시스템은 사용자의 질의에 대해 결과에 대한 순위만을 제공할 뿐 사용자의 취향이나 선호도와 같은 개인 정보를 고려하지 않기 때문에 사용자가 충분히 만족할만한 정보를 제공받지 못해 사용자의 만족도가 떨어진다. 이를 해결하기 위해 본 논문에서는 대표 선율을 이용하여 유사한 곡들로 클러스터링을 수행하고 내용 기반 검색 시 질의가 속하는 클러스터를 찾고 해당 클러스터 안에서 거리함수를 통해 질의와 유사한 곡들을 선별한다. 선별된 곡들과 사용자의 프로파일을 통해 음악 취향을 고려할 수 있는 내용 기반음악 필터링 기법을 적용하여 사용자의 만족을 증가시키는 결과를 제공한다.

  • PDF

Personalized reservation service using mobile location information (모바일 위치 정보를 이용한 개인화된 영화 예매 서비스)

  • Kim Ryong;Kim Young-Kuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.598-600
    • /
    • 2005
  • 정보통신기술과 인터넷의 급속한 발전과 이동통신기기의 발전 및 보급이 확산됨에 따라 기존 유선상의 인터넷 서비스를 무선 환경으로 확대하는 무선 인터넷 서비스가 대두 되고 있다. 또한 이러한 이동통신기기는 통신 기능뿐만 아니라 다양한 정보기기 역할을 수행하며, 무선 인터넷 서비스 접속이 가능하여 일반인들의 필수품이 되어 있는 상황이다. 이동통신기기에서 위치정보를 이용한 서비스로는 길안내 서비스가 대표적이다. 본 논문에서는 기존 영화 예매 서비스의 문제점인 사용자의 위치 정보를 사용하지 않는 것과, 개인화 되지 않은 것을 해결하고자 한다. 제안하는 서비스는 사용자의 위치 정보로 현재 사용자의 위치와 가까운 극장 목록을 제시해 주며, 사용자 프로파일 정보를 협업 필터링과 규칙기반 필터링을 통해 개인화된 영화 목록 서비스와 극장 목록 서비스 방법을 제안한다. 이러한 개인화된 서비스는 무선 인터넷 환경의 제한된 네트워크 대역폭 사용 한계를 효과적으로 개선해 줄 수 있다.

  • PDF

분산 모바일 환경에서 멀티미디어 콘텐츠 추천 및 검색 서비스 설계 및 구현

  • Kim, Ryong;Kim, Byeong-Man;Kim, Yeong-Guk
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.579-584
    • /
    • 2007
  • 대용량 모바일 기기의 발전과 보급이 확산됨에 따라 사용자들은 사진, 음악, 동영상과 같은 멀티미디어 콘텐츠를 대량으로 휴대하며 이용할 수 있게 되었다. 그러나, 이러한 대량의 멀티미디어 콘텐츠 관리는 사용자 각자에게 맡겨져 있어 콘텐츠 관리를 어렵게 하고 있는 현실이다. 본 논문에서는 분산 모바일 환경에서 멀티미디어 콘텐츠의 공유와 추전을 통해 사용자에게 적합한 콘텐츠를 추천을 통해 제공하고, 제공된 콘텐츠는 모바일 동기화 서비스를 통해 모바일 기기로 저장하고 관리되는 '분산 모바일 환경에서 멀티미디어 콘텐츠 추전 및 검색 서비스'를 설계하고 구현하였다. 제안된 시스템은 사용자의 선호 프로파일 정보로 협업 필터링을 통해 공유된 멀티미디어 콘텐츠 중에서 사용자에게 적합한 콘텐츠를 추천해 주고, 추천된 콘텐츠는 모바일 기기 사용자의 행동에 따라 모바일 동기화 서비스를 통해 모바일 기기에 저장과 관리, 검색이 된다. 본 논문에서 제안된 방법은 추천과 검색을 통해 사용자 모바일 기기의 멀티미디어 콘텐츠를 효율적으로 관리 할 수 있다. 이처럼 본 논문에서 제안된 서비스 방법은 멀티미디어 콘텐츠의 추천과 모바일 동기화 서비스로 능동적인 콘텐츠 관리를 제공하며, 사용자에게 효율적인 콘텐츠 검색 기법과 활용 방법을 제공 할 수 있다.

  • PDF

A Music Recommender Service System using Data Mining and Filtering (데이터 마이닝과 필터링을 이용한 음악추천 서비스 시스템)

  • Lee, Sang-jae;Kim, Won-young;Kim, Ung-mo
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.731-732
    • /
    • 2009
  • MP3 기기 및 음악재생과 관련된 인터페이스는 이미 우리 생활 곳곳에 전반적으로 자리잡고 있다. 기존의 수동적으로 음악 파일을 검색하여 듣는 방법이 아닌, 사용자의 심리상태, 관심사와 외부변수를 고려하여 사용자가 선호할 만한 음악추천 서비스를 제공하는 방법에 대해 논의한다. 본 논문에서는 데이터 마이닝의 기법인 연관 규칙, 필터링과 추천방법을 통하여 사용자가 원하는 서비스 정보를 효율적으로 도출하는 추천 시스템을 설계한다. 또한 이러한 시스템의 추천목록에 대한 사용자의 만족도를 스스로 평가하는 방법에 대해서도 제안한다.

A Study on Scientific Article Recommendation System with User Profile Applying TPIPF (TPIPF로 계산된 이용자프로파일을 적용한 논문추천시스템에 대한 연구)

  • Zhang, Lingling;Chang, Woo Kwon
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.1
    • /
    • pp.317-336
    • /
    • 2016
  • Nowadays users spend more time and effort to find what they want because of information overload. To solve the problem, scientific article recommendation system analyse users' needs and recommend them proper articles. However, most of the scientific article recommendation systems neglected the core part, user profile. Therefore, in this paper, instead of mean which applied in user profile in previous studies, New TPIPF (Topic Proportion-Inverse Paper Frequency) was applied to scientific article recommendation system. Moreover, the accuracy of two scientific article recommendation systems with above different methods was compared with experiments of public dataset from online reference manager, CiteULike. As a result, the proposed scientific article recommendation system with TPIPF was proven to be better.

Application of Research Paper Recommender System to Digital Library (연구논문 추천시스템의 전자도서관 적용방안)

  • Yeo, Woon-Dong;Park, Hyun-Woo;Kwon, Young-Il;Park, Young-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.10-19
    • /
    • 2010
  • The progress of computers and Web has given rise to a rapid increase of the quantity of the useful information, which is making the demand of recommender systems widely expanding. Like in other domains, a recommender system in a digital library is important, but there are only a few studies about the recommender system of research papers, Moreover none is there in korea to our knowledge. In the paper, we seek for a way to develop the NDSL recommender system of research papers based on the survey of related studies. We conclude that NDSL needs to modify the way to collect user's interests from explicit to implicit method, and to use user-based and memory-based collaborative filtering mixed with contents-based filtering(CF). We also suggest the method to mix two filterings and the use of personal ontology to improve user satisfaction.

An Analysis Method of User Preference by using Web Usage Data in User Device (사용자 기기에서 이용한 웹 데이터 분석을 통한 사용자 취향 분석 방법)

  • Lee, Seung-Hwa;Choi, Hyoung-Kee;Lee, Eun-Seok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.189-199
    • /
    • 2009
  • The amount of information on the Web is explosively growing as the Internet gains in popularity. However, only a small portion of the information on the Web is truly relevant or useful to the user. Thus, offering suitable information according to user demand is an important subject in information retrieval. In e-commerce, the recommender system is essential to revitalize commercial transactions, raise user satisfaction and loyalty towards the information provider. The existing recommender systems are mostly based on user data collected at servers, so user data are dispersed over several servers. Therefore, web servers that lack sufficient user behavior data cannot easily infer user preferences. Also, if the user visits the server infrequently, it may be hard to reflect the dynamically changing user's interest. This paper proposes a novel personalization system analyzing the user preference based on web documents that are accessed by the user on a user device. The system also identifies non-content blocks appearing repeatedly in the dynamically generated web documents, and adds weight to the keywords extracted from the hyperlink sentence selected by the user. Therefore, the system establishes at an early stage recommendation strategies for the web server that has little user data. Also, user profiles are generated rapidly and more accurately by identifying the information blocks. In order to evaluate the proposed system, this study collected web data and purchase history from users who have current purchase activity. Then, we computed the similarity between purchase data and the user profile. We confirm the accuracy of the generated user profile since the web page containing the purchased item has higher correlation than other item pages.