최근 P2P 모델을 기반으로 한 애플리케이션의 등장으로 다양한 자원을 효율적으로 이용할 수 있게 되었다. P2P에서는 여러 대의 클라이언트를 상호 긴밀하게 연결함으로써 한 대의 서버에 다수의 클라이언트를 연결했을 때 보다 확실한 네트워크의 효과를 기대할 수 있다. 그러나, 기존의 P2P 모델의 경우, 다수의 피어가 네트워크에 참여하여 방대한 양의 자원을 공유할 경우, 원하는 자원을 검색하는데 많은 시간이 소요되는 문제점이 있다. 본 논문에서는 자원 검색의 비효율적인 문제를 해결하고자 협력 필터링 알고리즘을 이용해 P2P 파일 추천 시스템을 제안하고자 한다. 제안한 P2P 시스템은 피어(Peer)들을 유사한 패턴을 갖는 가상 그룹으로 형성해, 그룹 내에서 유용한 자원들을 검색 없이 공유할 수 있도록 하였으며, 자원의 선호도를 기반으로 요청한 자원 외에 추천 시스템을 통해 선호하는 자원을 예측해 제공할 수 있도록 하였다.
In this paper we propose an active learning method that makes a database for the information about certificates and practical examinations and accesses it easily. First of all, this method makes it possible to evaluate students individually, improves the motive of learning and gives students a sense of achievement by providing a user-specific question filtering technique using user pronto information by weight. And, it elevates the acquisition rate of certificates by advising and managing for certificate-acquisition and it also draw more interest and understanding for future directions.
Kim, Byeong-Man;Li, Qing;Kim, Si-Gwan;Lim, En-Ki;Kim, Ju-Yeon
Journal of KIISE:Software and Applications
/
v.31
no.3
/
pp.332-342
/
2004
With the explosive growth of information in our real life, information filtering is quickly becoming a popular technique for reducing information overload. Information filtering technique is divided into two categories: content-based filtering and collaborative filtering (or social filtering). Content-based filtering selects the information based on contents; while collaborative filtering combines the opinions of other persons to make a prediction for the target user. In this paper, we describe a new filtering approach that seamlessly combines content-based filtering and collaborative filtering to take advantages from both of them, where a technique using user profiles efficiently on the collaborative filtering framework is introduced to predict a user's preference. The proposed approach is experimentally evaluated and compared to conventional filtering. Our experiments showed that the proposed approach not only achieved significant improvement in prediction quality, but also dealt with new users well.
KIPS Transactions on Computer and Communication Systems
/
v.2
no.11
/
pp.475-482
/
2013
Several approaches to recommendation systems have been studied. One of the most successful technologies for building personalization and recommendation systems is collaborative filtering, which is a technique that provides a process of filtering customer information based on such information profiles. Collaborative filtering systems, however, have a sparsity if there is not enough data to recommend. In this paper, we suggest a movie recommendation system, based on the weighted personal propensity and the collaborating filtering system, in order to provide a solution to such sparsity. Furthermore, we assess the system's applicability by using the open database MovieLens, and present a weighted personal propensity framework for improvement in the performance of recommender systems. We successfully come up with a movie recommendation system through the optimal personalization factors.
This paper proposes an efficient remote video evaluation system that is matched well with personalized characteristics of students using information filtering based on user profile. For making a question in forms of video, a key frame extraction method based on coordinate, size and color information is proposed. And Question-mating intervals are extracted using gray-level histogram difference and time window. Also, question-making method that combined category-based system with keyword-based system is used for efficient evaluation. Therefore, students can enhance their study achievement through both supplementing their inferior area and preserving their interest area.
Journal of the Korea Society of Computer and Information
/
v.11
no.2
s.40
/
pp.153-158
/
2006
The effect of solving questions and learning via internet is getting more and more important these days. In this paper we propose an active learning method that makes a database for the information about certificates and practical examinations and accesses it easily. First of all, this method makes it possible to evaluate students individually, improves the motive of learning and gives students a sense of achievement by providing a user-specific question filtering technique using user profile information by weight. And, it elevates the acquisition rate of certificates by advising and managing for certificate-acquisition and it also draw more interest and understanding for future directions. The case using the method of this paper, the examination record of a certificate of qualification is elevated about 10 marks.
Kim, Young-Ji;Mun, Hyeon-Jeong;Ok, Soo-Ho;Woo, Yong-Tae
The KIPS Transactions:PartD
/
v.9D
no.6
/
pp.1009-1016
/
2002
We design and implement a new case-based recommender system using implicit rating information for a digital content site. Our system consists of the User Profile Generation module, the Similarity Evaluation and Recommendation module, and the Personalized Mailing module. In the User Profile Generation Module, we define intra-attribute and inter-attribute weight deriver from own's past interests of a user stored in the access logs to extract individual preferences for a content. A new similarity function is presented in the Similarity Evaluation and Recommendation Module to estimate similarities between new items set and the user profile. The Personalized Mailing Module sends individual recommended mails that are transformed into platform-independent XML document format to users. To verify the efficiency of our system, we have performed experimental comparisons between the proposed model and the collaborative filtering technique by mean absolute error (MAE) and receiver operating characteristic (ROC) values. The results show that the proposed model is more efficient than the traditional collaborative filtering technique.
네트워크의 발달은 유선 인터넷(Wired LAN)과 무선 인터넷(Wireless LAN) 시대를 지나 휴대 인터넷(Mobile LAN)으로 발전하고 있다. 이처럼 다양한 네트워크의 공존은 사용자에게 보다 빠르고 저렴한 서비스를 제공하고 있다. 본 논문에서는 모바일 기기 사용자를 위한 개인화 방법으로 협업 필터링 방법을 통한 추천과 푸쉬(push) 방식의 서비스 방법을 제안한다. 사용자 프로파일 정보는 협업 필터링 방법을 통한 사용자 선호 음악 추천을 수행하고, 추천된 사용자 선호 음악은 모바일 기기로 푸쉬 서비스 된다. 추천을 통한 모바일 음악 푸쉬 서비스는 모바일 기기 사용자로 하여금 네트워크 환경에 접속되어있을 때 사용자 취향에 맞는 음악을 능동적으로 다운로드 해 둠으로써 사용자가 음악을 선택하여 모바일 기기로 다운로드 하는 시간을 줄여 줄 수 있다.
전자상거래에서 사용되고 있는 추천시스템은 사용자들의 프로파일과 이들의 정보를 바탕으로 사용자가 선호할 만한 아이템을 추천한다. 추천시스템에서 널리 사용되고 있는 협력적 필터링 방식은 사용자들 사이의 선호도 평가치를 비교하여 유사 사용자를 선택하고, 아이템에 대한 유사 사용자의 선호도 평가치를 기반으로 하여 추천하고자 하는 아이템에 대한 사용자의 선호도를 예측하는 것이다. 하지만 사용자의 선호도가 적은 데이터로 인한 희소성 문제는 추천시스템의 성능을 저해하는 요인으로 작용하고 있다. 이러한 희소성의 문제는 선호도 평가 자료에 나타난 아이템들의 총수에 비하여 사용자가 선호한 아이템의 수가 아주 적기 때문에 발생하며, 새로운 사용자의 경우에는 아이템에 대한 선호도 평가치가 없어 유사 사용자를 선택할 수가 없어 나타나며 심한 경우에는 아이템을 전혀 추천할 수 없게 된다. 이리할 추천 시스템의 희소성문제를 해결차기 위한 방법은 희소성이 높은 데이터들에 대한 희소성을 감소시키는 것이다. 따라서 본 논문에서는 아이템에 대한 희소성을 조사하여 협력적 필터링에서 희소성 아이템이 MAE에 미치는 영향을 분석하였다. 그리고 희소성 문제를 완화하여 예측 정확도를 높이기 위한 방법으로 선호도가 적은 아이템에 대해 희소성을 최소화하는 연구와 이에 따라 희소성과 MAE의 값을 개선하는 방법을 제안한다.
Kim Joo-Han;Lee Min-Soo;Kwon Sung-Gu;Han Youn-Taek;Song Oh-Young;Park Se-Hyun
Proceedings of the Korea Institutes of Information Security and Cryptology Conference
/
2006.06a
/
pp.641-644
/
2006
윈도우 자체에서 제공하는 방화벽이나 기존의 솔루션으로 제공되고 있는 방화벽에 대한 한계점을 보완하고자 기존의 패킷 필터링 방화벽과 어플리케이션 필터링 방화벽의 장점을 모두 가지고 있는 하이브리드형의 방화벽을 제안하고, 사용자들이 방화벽 시스템의 부하를 줄이기 위해서 각종의 서비스들을 제공할 때 사용자 프로파일의 context에 기반을 둔 확장된 필터링 엔진을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.