• Title/Summary/Keyword: 파일럿 수신기

Search Result 34, Processing Time 0.022 seconds

Performance of pilot-assisted coded-OFDM-CDMA using low-density parity-check coding in Rayleigh fading channels (레일리 페이딩 채널에서 파일럿 기법과 LDPC 코딩이 적용된 COFDM-CDMA의 성능 분석)

  • 안영신;최재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.532-538
    • /
    • 2003
  • In this paper we have investigated a novel approach applying low-density parity-check coding to a COFDM-CDMA system, which operates in a multi-path fading mobile channel. Developed as a linear-block channel coder, the LDPC code is known for a superior signal reception capability in AWGN and/or flat fading channels with respect to increased encoding rates, however, its performance degrades when the communication channel becomes multi-path fading. For a typical multi-path fading mobile channel with a SNR of 16㏈ or lower. in order to obtain a BER lower than 1 out of 10000, the LDPC code with encoding rates below 1:3 requires not only the inherent parity check information but also the piloting information for refreshing front-end equalizer taps of COFDM-CDMA, periodically. For instance, while the 1:3-rate LDPC coded transmission symbol is consisted of data bits and parity-check bits in 1 to 3 proportion, on the other hand, in the proposed method the same rate LDPC transmission symbol contains data bits, parity check bits, and pilot bits in 1 to 2 to 1 proportion, respectively. The included pilot bits are effective not only for channel estimation and channel equalization but for symbol decoding by assisting the parity-check bits, hence, improving SNR vs BER performance over the conventional 1:3-rate LDPC code. The proposed system performance has been verified using computer simulations in multi-path, Rayleigh fading channels, and the results show us that the proposed method out-performs the general LDPC channel coding methods in terms of SNR vs BER measurements.

Performance Improvement for Nonchoherent DS/CDMA Reverse Links using Channel Estimation and Multiuser Detection (비동기 복조 DS/CDMA 역방향 링크에서 채널 추정 및 다중 사용자 검파를 이용한 성능 개선)

  • 홍대기;윤석현;홍대식;강창언
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.755-764
    • /
    • 2001
  • In this paper, we propose maximum likelihood (ML) decision feedback channel estimation (DFCE) for M-ary orthogonal modulation in direct sequence/code division multiple access (DS/CDMA) systems. The proposed DFCE uses the maximum combiner output in a RAKE receiver as decision feedback information, enabling M-ary orthogonal signals to be demodulated coherently and a RAKE receiver to use a em maximal ration combining (MRC) scheme. However, the performance of the proposed DFCE in the multiuser environment is severely degraded due to multiple access interference (MAI). To overcome this problem, a multistage parallel interference cancellation (PIC) scheme is combined with the proposed DFCE for multiuser environments. Accurate knowledge of the channel coefficient estimated by the proposed DFCE is used to regenerate the signal of each user for the multistage PIC scheme. According to the results of our simulations, the performance of coherent demodulation using the proposed system is significantly improved in comparison with conventional noncoherent demodulation.

  • PDF

A Calibration Technique for Array antenna based GPS Receivers (배열 안테나 기반 GPS 수신기에서의 교정 방안)

  • Kil, Haeng-bok;Joo, Hyun;Lee, Chulho;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.683-690
    • /
    • 2018
  • In this paper, a new signal processing technique is proposed for calibrating gain, phase, delay offsets in array antenna based anti-jamming minimum variance distortionless response (MVDR) global-positioning-system (GPS) receivers. The proposed technique estimates gain, phase and delay offsets across the antennas, and compensates for the offsets based on the estimates. A pilot signal with good correlation characteristics is used for accurate estimation of the gain, phase and delay offsets. Based on the cross-correlation, the delay offset is first estimated and then gain/phase offsets are estimated. For fine delay offset estimation and compensation, an interpolation technique is used, and specifically, the discrete Fourier transform (DFT) is employed for the interpolation technique to reduce the computational complexity. The proposed technique is verified through computer simulation using MATLAB. According to the simulation results, the proposed technique can reduce the gain, phaes and delay offset to 0.01 dB, 0.05 degree, and 0.5 ns, respectively.

Performance Evaluation of Channel Estimation Scheme for ATSC 3.0 MIMO under Fixed Reception Environment (고정 수신 환경에서 ATSC 3.0 MIMO의 채널 추정 방법에 따른 성능 평가)

  • Kim, Hyeongseok;Yeom, Myeonggil;Kim, Jeongchang;Park, Sung-Ik;Jung, Hoiyoon;Hur, Namho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.879-891
    • /
    • 2019
  • This paper provides performance evaluations of various channel estimation schemes for Advanced Television Systems Committee (ATSC) 3.0 multiple-input multiple-output (MIMO) system under a fixed reception environment. ATSC 3.0 MIMO system can obtain high spectral efficiency and improved reception performance compared to conventional terrestrial broadcasting systems. The ATSC 3.0 MIMO defines Walsh-Hadamard and null pilot encoding algorithms and the amplitude and phase of MIMO pilots are different from those of single-input single-output pilots. At the receiver, linear and discrete Fourier transform (DFT)-based interpolations can be used for the channel estimation. This paper provides the various combinations of the interpolation schemes for channel estimation in time and frequency dimensions, and then analyzes the performance of the various combinations through the computer simulation. The results of computer simulation show that the combination of the linear interpolation in the time dimension and then DFT-based interpolation in the frequency dimension can obtain the best performance among the considered combinations.

Baseband Signal Compensation Scheme for Frequency Selective Fading Channel and RF Impairments in OFDM System (OFDM 시스템에서 주파수 선택적 페이딩 채널과 RF 불완전 변환 극복을 위한 기저대역 신호보상 기법)

  • Kim, Jae-Kil;Kim, Jeong-Been;Hwang, Jin-Yong;Shin, Dong-Chul;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.55-64
    • /
    • 2010
  • In this paper, we propose a new compensation scheme for combined channel distortions and RF impairments based on the analysis of the impacts of IQ(In-phase/Quadrature) imbalance and phase noise on the OFDM(Orthogonal Frequency Division Multiplexing) system in the direct conversion transceiver and frequency selective fading channel distortion. The proposed scheme estimates the combined distortion by the use of training symbols and the residual distortion by pilot symbols and compensates the combined distortion, including IQ imbalance, phase noise and multipath fading at the same time. The simulation results show that the proposed scheme compensates the combined distortion of IQ imbalance, phase noise and multipath fading simultaneously.

A Carrier Frequency Synchronization Scheme for modified ATSC Systems (수정된 ATSC 전송 시스템을 위한 반송파 주파수 동기부 설계에 관한 연구)

  • Jeon, Young-Gon;Kim, Joon-Tae
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.96-107
    • /
    • 2011
  • Recently, studies of 3D HDTV broadcasting technology have been processed actively. Korea is making efforts to modify Advanced Television Systems Committee (ATSC) 8-Vestigial Side Band (8-VSB) systems for terrestrial 3D HDTV broadcasting services. We intend to adopt a new frame structure to use PN (Pseudo-Noise) sequence as frame header, and VSB modulation. PN sequence is used to recover carrier freqeuncy offset, carrier phase error. In this paper, we will describe this system as the modified ATSC systems. The receiver of the modified ATSC system should be able to estimate and recover carrier frequency offset exactly. A existing ATSC systems inserts pilot to recover carrier frequency offset, on the other hand the modified ATSC systems use PN sequence to recovery carrier frequency offset without the use of pilot. In this paper, we introduce carrier frequency recovery (CFR) scheme for the modified ATSC systems. The proposed CFR scheme is composed of coarse CFR scheme using Fitz algorithm and fine CFR scheme using a simple PN sequence correlation algorithm. And, the symbol information of QAM modulated signal is contained in both In-phase (I)channel and Quadrature-phase (Q)channel. However the symbol information of VSB modulated signal is contained in I channel, and Q channel is just Hilbert transform of I channel. For the reason, VSB modulated symbols can not have fixed phase like QAM modulated symbols, and VSB modulated symbols is more sensitive to carrier frequency offset. Therefore we perform phase correction of received PN sequence to improve performance.

Compensation of OFDM Signal Degraded by Phase Noise and IQ Imbalance (위상 잡음과 직교 불균형이 있는 OFDM 수신 신호의 보상)

  • Ryu, Sang-Burm;Kim, Sang-Kyun;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1028-1036
    • /
    • 2008
  • In the OFDM system, IQ imbalance problem happens at the RF front-end of transceiver, which degrades the BER(bit error rate) performance because it affects the constellation in the received signal. Also, phase noise is generated in the local oscillator of transceivers and it destroys the orthogonality between the subcarriers. Conventional PNS algorithm is effective for phase noise suppression, but it is not useful anymore when there are jointly IQ(In-phase and Quadrature) imbalance and phase noise. Therefore, in this paper, we analyze the effect of IQ imbalance and phase noise generated in the down-conversion of the receiver. Then, we estimate and compensate the IQ imbalance and phase noise at the same time. Compared with the conventional method that IQ imbalance after IFFT is estimated and compensated in front of FFT via the feedback, this proposed method extracts and compensates effect of IQ imbalance after FFT stage. In case IQ imbalance and phase noise exist at the same time, we can decrease complexity because it is needless to use elimination of IQ imbalance in time domain and training sequences and preambles. Also, this method shows that it reduces the ICI and CPE component using adaptive forgetting factor of MMSE after FFT.

Performance Evaluation of Convolution Coding OFDM Systems (컨볼루션 코딩 OFDM 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.294-301
    • /
    • 2013
  • OFDM technique uses multiple sub-carriers for the data transmission. Therefore, bit error rate increases because of inter-carrier interference caused by nonlinear high power amplifier and carrier frequency offset. Wireless OFDM transmission over multi path fading channels is characterized by small transmission gain in multiple sub-carrier frequency interval. Therefore bit error rate increases because of burst errors. Inter-leaver and convolution error control coding are effective for the reduction of this burst error. Pilot symbol is used for the channel estimation in OFDM systems. However, imperfect channel estimates in this systems degrade the performance. The performance of this convolution coding OFDM systems using inter-leaver, gauged by the bit error rate, is analyzed considering the nonlinear high power amplifier, carrier frequency offset and channel estimation error.

Performance Analysis and Design of a WCDMA Mobile Station's Multi-path Searcher for Down-link with Multiple Transmit Antennas (다수의 송신 안테나가 있는 하향 링크에서 W-CDMA 단말기 다중 경로 검색기의 설계 및 성능분석)

  • Kim Young Ju;Won Seung Hwan;Kim En Ki;Lee Insung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.95-102
    • /
    • 2006
  • In this paper, we present the performance analysis and design of a multi-path searcher operating over Rayleigh fading channels when multiple transmit antennas are employed in the down-link of W-CDMA system. The simulation results for the receiver operating characteristics (ROC) for 1, 2, and 4 transmit antennas are presented to corroborate the theoretical analyses. We also propose a procedure to find the optimum parameters of double-dwell serial searcher according to the number of the multiple transmit antennas. Our analyses and simulations indicate that post-detection integration is not necessary when the number of transmit antennas is more than two. Finally, we found that increasing transmit diversity order does not necessarily improve the detection performance when the received pilot signal strength is relatively low. Therefore, this gives us a practical criterion on increasing transmit diversity order.

A Low Complicate Reverse Rake Beamforming Algorithm Based On Simplex Downhill Optimization Method For DS/CDMA Communication (Simplex Downhill 최적화 기법을 기반으로 하는 간략화 된 DS/CDMA 역방향 링크 Rake Beamforming Method)

  • Lee Sang-Keun;Lee Yoon-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.249-253
    • /
    • 2006
  • We propose a new beamforming algorithm, which is based on simplex downhill optimization method in the presence of pilot channels in cdma2000 reverse-link, for the rake structure antenna array in DS/CDMA communication system. Our approach uses the desired signal(pilot) covariance matrix and the interference covariance matrix. The beamforming weights are made according to maximum SINR criteria using simplex downhill optimization procedure. Our proposed scheme provides lower computational load, better convergence speed, better performance than existingadaptive beamforming algorithm. The simplex downhill method is well suited to finding the optimal or sub-optimal weight vector, since they require only the value of the deterministic function to be optimized. The rake beamformer performances are also evaluated under several set of practical parameter values with regard to spatial channel model. We also compare the performance between conventional rake receiver and the proposed one under same receiving power.