• 제목/요약/키워드: 파인 블랭킹 금형

검색결과 23건 처리시간 0.015초

파인블랭킹 금형의 개념설계 자동화에 관한 연구 (A Study on the Development of a Computer Aided Conceptual Die Dosing System for Fine Blanking)

  • 곽태수;최철현;서명규;배원병
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.71-76
    • /
    • 2001
  • This paper describes a research work of developing system for conceptual die design system for Fine blanking. The method of approaching to the system is based on the knowledge-based rules. Knowledge for the system is formulated from experimental results and the empirical knowledge of field experts. This system has been written in VisualLISP on the AutoCAD using a personal computer and in Microsoft Visual Basic ver.6.0. Transference of data is accomplished by DXF (Drawing Exchange Format) method. This system consists of six modules, which are cognition of a drawing, cognition of shear length, calculation of shear force, materials properties database, determination of degree of difficulty of the product, determination of approximate life of punch and die modules. Results carried out in each module will provide efficiency to the designer and the manufacturer of die for Fine blanking. But the main focus of this system is the design of die for Fine blanking in the level of general concept. In order to use powerful tool in this field, developed system will be studied continuously.

  • PDF

파인블랭킹 공정에서 V-링에 의한 재료의 변형 거동에 관한 연구 (A Study on the Deformation Behavior of Material by V-Ring in Fine Blanking Process)

  • 이춘규;민경호
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.46-50
    • /
    • 2017
  • Press processing is one of the best machining methods capable of mass production, satisfying dimensional, shape and quality among the methods of processing a metal plate. Among them, Fine blanking is a method of obtaining a precise cross-section such as machining of the shear surface shape. In this research, Using SCP-1 and SHP-1 materials. The deformation behaviors of the material flow affecting the die height of the shear section in accordance with the position of the V-ring in the Fine blanking were compared and analyzed. Result of interpretation, It was confirmed that the force acts on the position where the material flow direction accurately forms the die roll that the material of SCP-1 is at a position of 1.5 mm and the material of SHP-1 is at 2.0 mm. As a result, it was confirmed that the state of fo1111ing the shear surface by the V-ring was excellent. Using analysis results, In the experiment, the height of the die roll was considered by applying The position of the V-ring was 1.5 mm in SCP-1 and 2.0 mm in SHP-1. As a result of comparing the height of the die rolls, the height values of the die rolls were different from each other, It has been considered that the tendency of the die rolls to coincide with each other. It is considered that the difference of the die roll height is caused by the pressure input of the V-ring. In this study, the deformation behavior of the material(In addition to the position of the V-ring, the flow direction of the material depends on the shape of the V-ring and the Indentation amount) is considered to be an important factor in determining die roll height.

파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계 (Design of shearing process to reduce die roll in the curved shape part of fine blanking process)

  • 전용준
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.