• Title/Summary/Keyword: 파이프 서포트

Search Result 22, Processing Time 0.017 seconds

A Vision-based Pipe Support Displacement Measurement Method Using Moire Patterns (모아레 현상을 이용한 영상기반 파이프 서포트 변위측정 방법)

  • Park, Junbeom;Park, Semi;Kim, Jaehyeon;Kim, Jungyeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • It is very important to measure the displacement of a structure to evaluate the safety of the structure. This study shows a methodology to measure the displacement to determine the stability of a structure when it is damaged by loads. The methodology used Moiré's phenomenon and was verified through experiments. The experiments utilized pipes to simulate the pipe supports in the construction site and measured the vertical displacement of the Moiré interference patterns according to the horizontal displacement of the pipes. Experiments confirmed that the linear relationship between horizontal displacement of pipes and vertical displacement of Moiré patterns and derive a relational expression. In conclusion, the methodology presented in this work allows us to simultaneously measure a number of vertical members' displacements regardless of distance and determine the safety of the structure.

A Study for Evaluation of Performance and Influence Factors for Steel Pipe Supports ( I ) (강제파이프서포트의 성능평가 및 영향요인에 대한 연구( I ))

  • Hwang Jung-Hyun;Shin Sang-Tae;Yun Sang-Moon;Kim Kyung-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.139-146
    • /
    • 2004
  • Recently, interest on the performance of the construction temporary equipment have been greatly increased. Since the application of the 'Performance Test Code' for the equipment in 1992 according to the Industrial Safety and Health Act, a basic study of Steel Pipe Supports have been carried out for the last 2 years based on the Performance Test Results. The present code specification for the Steel Pipe Supports and research status are introduced. So far, total 849 specimen have been examined on their outer and inner pipe's length, thickness, their overlapping length, and their load carrying capacities. The test was conducted separately into two groups - used and new equipment, and it was found that the used ones revealed a decrease on their load carrying capacity, almost $10\%$ compared to the new ones. Considering this fact, it is strongly recommended to ensure the quality of the equipment before use at the jobsite. First of all, based on this basic investigation, the statistical values on the Steel Pipe Supports are suggested and further analysis on the effect of each component is in progress. It is, however, expected that this report can be used as a basic information on the Steel Pipe Supports.

A Study on the Improvement Plan of Reusable Pipe Support Certification System (재사용 파이프서포트 인증제도의 개선방안 연구)

  • Moon, Seong-Oh;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.4-5
    • /
    • 2020
  • Pipe support is a representative structure that supports slab formwork, and it is a representative temporary equipment that has been systematically managed since the 1990s when the domestic temporary equipment performance test system was introduced. Nevertheless, it is also a reality that many of the products in circulation are used products that are reused and do not meet the performance of the initial manufacturing stage. However, if only new products are insisted, it could lead to delays in the process due to an increase in construction costs and difficulties in timely delivery. On the contrary, it is not acceptable for the safety of the construction site to use products of low quality without verification procedures or standards. Therefore, this study attempts to grasp the management system such as safety certification for temporary equipment and the actual condition of quality control to maintain performance, and propose improvement plans.

  • PDF

Establishment of Information Interface Technology between Hull and Outfitting Designs (선체설계와 의장설계간의 정보인터페이스 기법 연구)

  • Choi, Yeong-Tae;Suh, Heung-Won;Lee, Soon-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.458-465
    • /
    • 2013
  • Ship design engineering refers to the development and design of shipbuilding architectures in a drawing which reflects all relevant manufacturing processes. This paper provides analysis methods for model-information interfaces between hull structure design and outfitting design, and a technical application for manufacturing phases reflecting the pipe support pad and angle item automatically. The existing information procedure of pipe support pad and angle system processes information using drawing without model specification. Outfitting design team directly distributes drawings to the shop floor then manual-based marking and installation work are conducted refer to the distributed drawings. As a result, this process has become time consuming and causes problems in the productivity and quality improvement due to the rework caused by omitted or incorrect marking. The pipe support pad and angle marking is a method that automatically updates model information to hull structure design using sets of data that analyse the generated model in outfitting design processes. Therefore, this approach provides an efficient solution through design references without manual activities such as a reflection of hull structure design, cutting process, numerical control work, and dimension measurement and marking. The conversion of a method from the existing procedure based on manual marking to the reflective and automatic approach would have enabled to proceed installation work without manual activities for the measurement. Therefore, this research study proposes an efficient approach using pre-data analysis of model information interfaces between design and manufacturing phases to improve productivity during construction for shipbuilding.

A Proposed method of the Strength Calculation of Pipe Support (파이프 서포트의 내력 산정 방안)

  • 이영욱;최순주
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • Even though there is a guideline for the required strength of pipe support in inspection, it does not mean the nominal strength which can be used for the form work design. And, Concrete Specification defines that the pipe support should be designed according to the steel design guidelines but the design details are not provided, such as buckling length and the sectional modulus, etc. For the better prediction of strength of pipe support, the slenderness ratio of support which reflects the boundary condition should be considered. In this paper, the elastic buckling formula based on the slenderness is derived. The formula contains the strength reduction factor that consider the strength deduction caused by initial lateral deformation and is 0.65 consistently regardless of boundary conditions. And the coefficient of effective buckling length is calculated from the experiment.

  • PDF

The Development of Aluminum Pipe Support for Apartment Slabs(I) (공동주택 슬래브의 알루미늄 파이프서포트 개발에 관한 연구(I))

  • Cha, Jung-Koo;Yi, Young-Seop
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.105-110
    • /
    • 2012
  • Steel elements are widely used for temporary structures on every construction site. but despite its strong resistences against heavy concrete volumes, they are easily eroded by oxygens in the space as times have been gone. If they are used several times in the construction fields, their elements are rusted and deformed and the strength is gradually reduced through the weak part. From this point of view, aluminum pipe support has been developed in stead of steel pipe sopport with enhancing durability against oxygens all the more. The developed aluminium pipe support has been lighter than steel unit, so workability has been improved. In another advantage of aluminium pipe support, different level control is possible with being equipped with the level control nut which enables the length adjustment of aluminium pipe support and the collapse of aluminum pipe support could be also prevented from the structures in the long term.

A Study on the Strength Change of Used Pipe Support (1) (재사용 파이프서포트의 내력변화 연구 (1))

  • Paik, Shin-Won;Ro, Min-Lae
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.93-97
    • /
    • 2004
  • Slab formwork consists of sheathing, stringer, hanger and shore. There are several types of adjustable individual shores. In constructions site, pipe supports are usually used as shores. The strength of a pipe support is decreasing as it is frequently being used at the construction site. In this study, 2857 pipe supports were bought to fine out the strength change of used pipe support and unused pipe supports according to aging. Among these pipe supports, 2337 pipe supports were lent to the construction companies free of charge. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports almost equaled to the strength of new pipe supports until 191 days, but the strength of used pipe supports at 191 days was lower than the strength of new pipe supports. So, the strength of used pipe supports at 191 days was not satisfied the specification of KS F 8001. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the paresent study results will be able to provide a firm base to design slab formwork and test the performance of used temporary structure and prevent formwork collapses.