• Title/Summary/Keyword: 파이프 랙

Search Result 6, Processing Time 0.019 seconds

Thermal Behavior of a Pipe-Rack Structure Subjected to Environmental Factors (외부 환경적 요인에 의한 파이프랙 구조물의 열적 거동)

  • Lee, Jong-Han;Lee, Jong-Jae;Kim, Sung-Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.165-170
    • /
    • 2015
  • Pipe-rack structures supporting high temperature and pressure are of great importance to ensure the safety of the operation of the plants. If some damage occurred in the pipe-rack structure, the facilities not only bring damage to the commercial property, but also result in economic losses. Specially, since pipe-rack structures are exposed to various environmental conditions, it is essential to evaluate the thermal behavior of the structure caused by environmental conditions for the appropriate design and maintenance of the pipe-rack structure. Thus, based on a selected, typical pipe-rack structure, a thermal-stress coupled analysis was conducted to evaluate the temperature distributions and thermal stresses of the structure. For this, this study accounted for the operating condition of the pipe and the effect of environmental conditions, Yeosu in South Korea and Saudi Arabia in the Middle East. The results of the study showed the need for accounting for a variance in the environmental factors to evaluate the thermal behavior of the pipe-rack structure along with the working condition of pipe.

Experimental Study on Improvement of Pipe-rack Joint (Pipe-rack접합부 개선방법에 관한 실험적 연구)

  • Lee, Jong-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2018
  • The development of new technology and process in industrial Plant which builds integrated structures, facilities and systems. Has become a key element for strengthening its competitiveness. Although domestic industrial Plant has demonstrated excellence in technology with a persistent increase in order quantity and orders received, the technology gap between countries has narrowed due to global construction trend. Therefore, it is necessary to develop new technology that could help overcome constraints and limitations of the current one to follow the trend in the age of unlimited competition. This study has focused on assembly technology of Pipe-rack joint connection in an effort to strengthen technological competitiveness in industrial Plant. Through an analysis of earlier studies on Pipe-rack and a coMParative analysis of strengths and weaknesses of current assembly technology of it, a new design plan has been made to improve it efficiently. In doing this, standards for design factors of both structural and performance features have been drawn, and value of stress, strain, moment and rotation has been calculated using finite element analysis. As a result, installation technology of modular type Pipe-rack, which has not been developed in Korea and is differentiated from the current one, has been developed. It is considered that the technology reduces work time and saves cost due to simplified joint connection of steel structure, unlike the current one. Moreover, since it is installed without a welding process in the field, industrial accidents would be reduced, which is likely to have economic competitiveness and satisfy.

Stability Analysis of Pipe Rack Module for Underground Complex Plants Construction (복합플랜트 지하 건설을 위한 파이프랙 모듈 공법 안정 해석)

  • Kim, Sewon;Lee, Sangjun;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.113-124
    • /
    • 2021
  • Underground environmental infrastructure and energy production facilities, which are recognized as avoidable facilities such as landfills, are emerging as an important social issue due to urbanization and economic growth. In order to safely construct a large-scale plant facility in the underground space, it is necessary to increase the utilization of the limited space layout and minimize unnecessary columns. In this study, the plant modularization method(Pipe Rack Module) was reviewed to solve the problems of work constraints, assembly and demolition, process system interconnection, and maintenance that occur when plant facilities are underground. In addition, plant module analysis was performed by applying various load conditions (earthquake load, device load, earth pressure load, etc.) to improve spatial layout usability and secure structure stability. Based on the analysis results under various boundary condition, the implications regarding the minimum installation interval and module arrangement (draft) of basic modules required for the construction of an underground combined plant were derived.

Analysis of support loads in large underground space for high-density arrangement of complex plant (복합플랜트 고집적 배치를 위한 지하대공간 지지하중 해석)

  • Kim, Sewon;Park, Jun Kyung;Lee, Sangjun;Kim, YoungSeok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.77-92
    • /
    • 2021
  • For the construction of a large underground space with a complex plant installed, it is necessary to analyze the stability considering the ground conditions and various load conditions. In this paper, finite element analysis was performed to analyze the support load that can be used in the design of a large underground space for high-density arrangement of complex plant. An analysis of underground continuous wall (D-wall) was performed considering the load and horizontal earth pressure in the large underground space. In addition, foundation ground analysis was carried out according to the load condition of the complex plant. In order to shorten the construction period, increase the space layout utilization, and secure the stability of the plant structure when installing the complex plant underground, the pipe rack module structure analysis was conducted. This study proposes a design and construction method for the optimal arrangement of underground complex plants using the analysis results.

Limit States and Corresponding Seismic Fragility of a Pipe Rack for Maintaining Operation (운전성 유지를 위한 파이프랙의 한계상태와 지진취약도)

  • Kim, Juram; Hong, Kee-Jeung;Hwang, Jin-Ha
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.283-291
    • /
    • 2023
  • Unlike other facilities, maintaining processes is essential in industrial facilities. Pipe racks, which support pipes of various diameters, are important structures used in industrial facilities. Since the transport process of pipes directly affects the operation of industrial facilities, a fragility curve should be derived based on considering not only the pipe racks' structural safety but also the pipes' transport process. There are several studies where the fragility curves have been determined based on the structural behavior of pipe racks. However, few studies consider the damage criteria of pipes to ensure the transportation process, such as local buckling and tensile failure with surface defects. In this study, an analysis model of a typical straight pipe rack used in domestic industrial facilities is constructed, and incremental dynamic analysis using nonlinear response history analysis is performed to estimate the parameters of the fragility curve by the maximum likelihood estimation. In addition, the pipe rack's structural behavior and the pipe's damage criteria are considered the limit state for the fragility curve. The limit states considered in this paper to evaluate fragility curves are more reasonable to ensure the transportation process of the pipe systems.

A Study on Weight Estimation and Calculation of the Pipe Rack Structures for FPSO EPC Projects (FPSO Topsides Pipe Rack 견적 중량 추산 방법 연구)

  • Lee, Soo-Ho;Ahn, Hyun-Sik;Kim, Han-sung;Heo, Yoon;Bae, Jae-Ryu;Kim, Ki-Su;Ham, Seung-Ho;Lee, Sung-Min;Roh, Myung-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.362-370
    • /
    • 2016
  • The weight estimation and calculation of FPSO topsides is first performed at the bidding stage of projects. At this time, it is difficult to estimate and calculate accurately the weight because most of items of FPSO are not apparently defined. Especially, in the case of the pipe rack module, its portion of the total weight and the range of weight variation are large due to special features of piping and electric equipment in the module. Thus, it is very important to estimate and calculate accurately its weight in the task of the weight estimation and calculation of FPSO topsides. In this study, the past data for the weight of the pipe rack module were collected and analyzed, the WBS (Work Breakdown Structure) for the pipe rack module was constructed, and primary variables and secondary variables for developing a weight estimation and calculation model were selected. That is, after analyzing the past data, the volume was selected as the primary variable and the regression analysis was performed based on the variable. Then, several secondary variables were selected and incorporated into a weight estimation and calculation model. At this time, the weight per discipline was assumed from ratios of the total weight. Finally, the weight of the pipe rack module was estimated and calculated by using the developed model. As a result, the deviation from the model was better than that (-20 % ~ 60 %) of other studies about the weight estimation and calculation of FPSO topsides. Thus, the validity and applicability of the weight estimation and calculation of the pipe rack could be checked.