• Title/Summary/Keyword: 파이프파괴

Search Result 27, Processing Time 0.027 seconds

Seismic Performance of Stainless Power Joints Piping System using Finite Element Analysis (압착식 조인트가 적용된 파이프라인 유한요소 해석)

  • Ju, Bu-Seog;Jeon, Bub-Gyu;Nam, Jun-Seok;Ryu, Yong-Hee;Son, Ho-Young
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.145-146
    • /
    • 2017
  • 최근 세계적으로 많은 지진이 발생하고 있으며 기상이변으로 인한 자연재해로 인해 주요 시설물들의 안전성에 관한 관심이 증가하고 있는 추세이다. 특히 비구조 요소의 경우 구조 요소보다 건설 초기 투자비용이 높아 지진이 발생하였을 때 많은 피해가 발생할 가능성이 있으며 비구조 요소의 파괴는 심각한 2차피해로 발전 될 수 있으므로 내진안전성 평가는 반드시 이루어져야 한다고 볼 수 있다. 따라서 본 연구에서는 압착식 조인트의 접촉을 고려한 수계소화설비 파이프라인의 내진성능 평가를 위한 비선형 유한요소 모델을 구축하였다.

  • PDF

A Study on the Repair of Fatigue Damage at Large Cast Iron structure using Cold Joint Method (냉간체결방법을 이용한 대형 주철 구조물의 피로손상수리방법에 대한 연구)

  • Lee, Sung-Riong;Lee, Dong Jun;Cho, Seok Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.140-148
    • /
    • 2019
  • Large cast iron structures are used in casings and pipes in shipsand chemical plants. Broken parts in the casings and pipescan result in failures even when stresses are below the yield strength of the part's materials. Fatigue failure of a large cast iron structure is inevitable due to the design constraints and low reliability of the material strength. A small structure can be repaired by welding, but a large structure cannot because it cannot be preheated slowly and uniformly. This study shows that a large structure can be repaired by a cold joint method using a crack repair screw. Large cast iron structures were manufactured by GC 300, and their design stress is below 3.5 MPa. The tensile strength on notched specimens repaired by crack repair screws was 8.2 MPa. Therefore, the safety factors of structures repaired by crack repair screws have a value above 2.3 and are considered to be high values.

Seismic Performance and Damage Prediction of Existing Fire-protection Pipe Systems Installed in RC Frame Structures (철근콘크리트 구조물 내 부착된 수계 관망시스템의 내진거동 및 손상예측)

  • Jung, Woo-Young;Ju, Bu-Seog
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.37-43
    • /
    • 2011
  • Reliability of piping systems is essential to the safety of any important industrial facilities. During an earthquake, damage to the piping system can occur. It can also cause considerable economic losses and the loss of life following earthquakes. Traditionally, the study of the secondary system was less important than primary structure system, however it has recently been emerging as a key issue for the effective maintenance of the structural system and to help reduce nonstructural earthquake damage. The primary objectives of this study are to evaluate seismic design requirements and the seismic performance of gas and fire protection piping systems installed in reinforced concrete (RC) buildings. In order to characterize the seismic behavior of the existing piping system in an official building, 10 simulated earthquakes and 9 recorded real earthquakes were applied to ground level and the building system by the newmark average acceleration time history method. The results developed by this research can be used for the improvement of new seismic code/regulatory guidelines of secondary systems as well as the improvement of seismic retrofitting or the strengthening of the current piping system.

Structural Analysis of Cheju-style Plastic Greenhouse Model for Crop Growing Based on the Wind Load (풍하중을 고려한 제주형 작물재배용 비닐하우스모델의 구조해석)

  • 민창식;김용호;권기린
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 1998
  • An elastic analysis under wind load was performed for the double layered plastic greenhouse model developed particularly for minimizing damages under typhoons at Cheju Citrus Research institute in Seagipo city. General EVA film was used for the inner covering and the developed special film which would break the wind pressure down was used for the outer covering. The wind tunnel test showed this special film reduced the wind speed up to 86 to 98% under well controlled situation. Based on the elastic analysis performed in the study, the behavior of the greenhouse was changed significantly due to the boundary conditions. Not like other researchers before we applied dead load of the concrete support to the ground pipe and fixed support boundary conditions at the 4 corner pipes. The analysis shows that the greenhouse was lifted and pulled the pipe out of the ground due to the sucking wind pressure. The behavior of the greenhouse was quite similar to that one real greenhouse failure. Therefore, not only we need to find the realistic boundary conditions for the supports, but also need to find how to rest the pipe supports on the ground without economic loss.

  • PDF

Estimation of fracture toughness of X65 and X70 steels by DWTT (X65 및 X70강 가스배관의 DWTT 및 파괴인성평가)

  • Cho, Ye-Won;Song, Young-Ho;Kim, Jeong-Min;Kim, Woo-Sik;Park, Joon-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.54-64
    • /
    • 2012
  • DWTT (Drop Weigh Tearing Test) is one critical method that can exhibit the fracture properties of line pipe steel, since it estimates the properties with real pipe steel. In this study, the ductile portion, inverse fracture ratio and absorbed energy of API X65 and X70 line pipe steels were estimated with temperature variation. Both steels showed that the ratio of ductile area and absorbed energy were decreased with respect to decreasing the test temperature. However, while the ductile fracture behavior exhibited until $-40^{\circ}C$ for the X70 steel, but it showed until $-30^{\circ}C$ for the X65 steel. The fracture properties were discussed with respect to test temperatures.

The Effect of Performance on Loading Impact of Emulsion Explosive in Long Vertical Borehole (에멀젼 폭약의 수직 장공 장약 시 낙하 충격에 의한 성능 영향)

  • Lee, Young-Ho;Lee, Seung-Chan;Lee, Eung-So
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.45-52
    • /
    • 2007
  • When emulsion explosives(1kg/cartridge) are loaded into a long vertical borehole at open blasting site, they undergo an Impact corresponding to 117.6J of shock energy. After shocking. the crystallization of emulsion nay happen immediately. Furthermore, it nay cause a desensitization, arising from increase in the density of emulsion explosive by the breakage of sensitizer. In this paper, some experimental work was performed using PVC pipe equipment(50mm diameter and 12m lengths) to investigate the effects of loading impart of emulsion explosive. It is shown that detonation energy decreases up to 26% of the normal state value and this effect is less than 3% of the total performance of emulsion explosives in borehole blasting.

An experimental study on weld characteristic for piping connection part (파이프 연결부위의 용접특성에 관한 실험적 연구)

  • Park, Keyung-Dong;Kim, Dong-Woog
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.226-227
    • /
    • 2005
  • In this study, it was investigated about endurance and fatigue crack propagation rate of according to welding methods of SMAW and FCAW commonly using for welding structures in present. Endurance limits carried out highly in the order of SMAW, FCAW and fatigue crack propagation rate out lowly in the order of SMAW, FCAW. By these results, it is needed to used SMAW welding methods for welding structures with small welding capacity and FCAW methods for large welding structures after consideration about economic gains and operation efficiency of welding. Fatigue crack propagation rate is more effected by strength of welding materials than endurance limit of welding materials according to welding methods..

  • PDF

TMCP 강재와 그 용접부의 강도특성

  • 김영식
    • Journal of the KSME
    • /
    • v.30 no.2
    • /
    • pp.146-154
    • /
    • 1990
  • 수냉형의 Bo kg/$\textrm{mm}^2$1급 TMCP 고장력 강재를 중심으로, 이 강재 모재의 기계적 특성 및 용접부의 각종 사용특성에 관해 종래의 압연제법에 의한 동일강도레벨의 고장력강판과 비교하여 고찰하고 이 강재의 유효이용에 대하여 설명하였다. TMCP 고장력 강판은 탄소당량이 낮고 결 정립 미세화가 달성되기 때문에 파괴인성이나, 용접부의 내외화, 내용접균열성 면에서 탁월한 특 징을 가지나 용접조립시 용접열사이클로 인한 연화현상 때문에 용접부의 사용특성이 문제로 될 수 있다. 그러나 용접조건이나, 강판의 강도, 화학성분의 배려, 선택에 따라 실용상 별로 문제가 되지 않음이 확인하고 있다. 이와 같은 특징으로 인해 TMCP강은 조선용 소재뿐만 아니고, 북해, 북극해와 같은 한냉빙해역의 가혹한 환경에서 작동되는 해양구조물용이나 라인 파이프용 소재 로서도 그 활용이 확대되어 갈 것으로 생각된다.

  • PDF

Analysis of Trench Slope Stability in Permafrost Regions According to the Equipment Load (동토 파이프라인 매설공사 시 장비하중에 의한 트렌치 안전성 분석)

  • Kim, Jong-Uk;Kim, Jung-Joo;Lee, Jae-Hyuk;Jafri, Turab H.;Yoo, Han-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.17-25
    • /
    • 2017
  • Recently, the need of alternate energy resources is increasing due to the global warming issue. The natural gas buried in the extremely cold regions of Alaska and Siberia is of much interest these days. However, the construction standards are needed to be used in extremely cold regions. Particularly, more research work need to be carried out on the trench stability so that the safety of the workers is ensured and the damage to the construction machinery can also be reduced resulting in smaller construction period. In this study, the process for lowering of the pipelines of 30 and 40 in. diameters in the ground conditions (silt and peat) of Yakutsk, Russia was analyzed. The slopes of the ground surface were considered as $0^{\circ}$, $10^{\circ}$, and $20^{\circ}$ to be excavated in summer and winter. The analysis results show that the weight of pipelayer affects the trench stability. Numerical analysis was performed by considering the types of pipelayers, distance between the trench and pipelayer, and the distance between the pipelayers placed longitudinally along the trench. The results show that as the distance between the pipelayer and the trench decreases, the factor of safety of the slope decreases with an increase in the slope of the ground surface. When the slope of the ground surface was $20^{\circ}$, the breakout surface was anticipated to continue from the pipelayer to the trench boundary. In winter season, stability problem of the trench was not observed when the slope of the ground surface was less than $20^{\circ}$.

발전 설비의 가동 중 신뢰성 평가를 위한 연속압입시험법의 활용

  • Song, Won-Seok;Gang, Seung-Gyun;Kim, Yeong-Cheon;Kwon, Dong-Il
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.125-130
    • /
    • 2011
  • 발전 설비는 기대 수명동안의 안정성을 확보하기 위하여 해당 규격에 부합하도록 설계하여 건설된다. 하지만 가동 중 다양한 복합 환경에 노출됨에 따라 구조물을 이루고 있는 재료의 열화 현상이 가속화되어 예기치 못한 파손이 발생할 수 있다. 기계적 물성은 재료의 기계적 거동을 나타내는 주요 척도가 되며 이는 신뢰성 및 안전과 직결된다. 하지만 기존의 역학물성을 측정하는 대부분의 시험법들은 특정 크기의 시편을 요구하고 파괴적인 시험법이기 때문에 가동 중 시설물에 적용하기가 불가능하였다. 이러한 한계점을 극복하고자 비파괴적이고 정량적인 시험이 가능한 연속압입시험법이 최근 각광받는 시험법으로서 많은 연구자들에 의해 연구되고 있다. 이 시험법은 시험 대상물의 형상에 제약을 받지 않으며 시험 절차가 매우 간단하다는 장점을 가진다. 또한 대상의 국소 부위에 시험할 수 있어 취약 부위 판별이 가능하다. 본 연구에서는 대표응력-대표변형률 기법을 통하여 인장물성을 평가하고, 압입 하중 차이를 이용하여 소재에 존재하는 잔류응력을 평가하는 기법을 소개한다. 또한, 연속압입시험을 이용하여 실제 발전소 파이프의 취약부위로 알려진 용접부에 대하여 인장물성 및 잔류응력을 측정함으로써 실제 산업체의 신뢰성 평가가 적용할 수 있음을 확인하였다.

  • PDF