• Title/Summary/Keyword: 파이로공정

Search Result 46, Processing Time 0.046 seconds

사용후핵연료 파이로공정 시설의 안전성 연구현황

  • Yu, Gil-Seong;Jo, Il-Je
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.253-253
    • /
    • 2009
  • 전세계적 고유가 및 $CO_2$ 배출로 인한 지구 온난화 문제 동 앞으로의 에너지 개발은 지속가능하며, 환경친화적이어야 한다. 따라서 가장 값싼 에너지원의 하나이며, 또한 환경문제에서도 유리한 원자력 에너지에 대한 세계적인 관심이 지난 약 30년 정도의 침체기간을 거친후 미국, 중국, 인도, 유럽, 아시아 등을 중심으로 다시 부활하고 있다. 그러나 미래 원자력에너지의 활발한 이용 및 지속 가능성을 위해서는 고준위 방사성 폐기물의 처리문제가 반드시 해결되어야 하며, 그 중에서도 사용후핵연료의 관리문제는 원자력 발전소의 계속 운전을 위해 시급히 해결되어야 한다. 한국원자력연구원도 2008년 12월 결정된 정부의 "미래 원자력시스템 개발 Action Plan" 을 통해 이러한 사용후핵연료의 관리문제를 해결하기 위한 연구 과제를 10여년 동안 수행해오고 있으며, 그 중 하나가 파이로(Pyroprocess) 공정개발이다. 1997년부터 관련연구가 착수되어, 2001년부터는 약 6년간에 걸쳐 파이로의 전처리 공정 및 전해환원 공정에 대한 실험실 규모 실증시설인 ACPF(Advanced spent fuel Conditioning Process Facility)를 개발한 바 있다. 또한 향후 파이로 기술의 상용화를 위해 2016년 까지 약 10톤/년 규모의 공학규모 파이로 실증시설(ESPF)을 건설하고 이를 기초로 2025년까지 100톤/년 규모의 파이로 상용시설 (KAPF) 을 건설하여 여기서 나온 우라늄 및 TRU 물질을 이용해 2030년까지 개발 예정인 소듐냉각 고속로에 필요한 핵연료를 제작, 공급하는 계획을 가지고 있다. 이 논문에서는 파이로 시설개발의 가장 중요한 인자중 하나인 시설의 안전성 확보를 위해 외국 및 국내에서의 연구개발 현황을 알아보고 안전성 분석 및 평가방법에 대한 기본 인자들을 도출해 보았다. 또한 파이로 시설의 인허가를 위한 사용후핵연료 처리시설 규제관련 국, 내외의 연구현황도 알아보았다.

  • PDF

Development of an Oxide Reduction Process for the Treatment of PWR Spent Fuel (PWR 사용후핵연료 처리를 위한 금속전환공정 개발)

  • Hur, Jin-Mok;Hong, Sun-Seok;Jeong, Sang-Mun;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • Reduction of oxides has been investigated for the volume reduction and recycling of the spent oxide fuel from commercial nuclear power plants. Various oxide reduction methods were proposed and KAERI (Korea Atomic Energy Research Institute) is currently developing an electrochemical reduction process using a LiCl-$Li_2O$ molten salt as a reaction medium. The electrochemical reduction process, the front end of the pyroprocessing, can connect the PWR (Pressurized Water Reactor) oxide fuel cycle to a metal fuel cycle of the sodium cooled fast reactor. This paper summarizes KAERI efforts on the development, improvement, and scale-up of the oxide reduction process.

A Conceptual Design Study for a Spent Fuel Pyroprocessing Facility of a Demonstration Scale (사용후핵연료 파이로 처리공정 실증시설의 개념설계 연구)

  • Yoo, Jae-Hyung;Hong, Kwon-Pyo;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.233-244
    • /
    • 2008
  • A conceptual design study for a pyroprocesing facility, has been carried out in this study, which is available for the recovery of uranium and transuranic elemental group(TRU), that is, reusable as a nuclear fuel especially in a next generation-type reactor. The scale of this facility has been chosen as 20 kg HM/batch, comparatively small engineering size in order to collect scale-up data for the design of a commercial facility as well as to get operational experience. The spent fuel to be handled in this process is as follows : 3.5 % enriched uranium fuel, 35,000MWd/tU and 5-year cooled. The major items considered in the conceptual study are a building lay-out including various hot cells, safety management of the process operation in conjunction with material balance control, radiation safety, inert atmosphere control in shielded hot cells, and criticality control of uranium and TRU products.

  • PDF

Study on Governing Equations for Modeling Electrolytic Reduction Cell (전해환원 셀 모델링을 위한 지배 방정식 연구)

  • Kim, Ki-Sub;Park, Byung Heung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.245-251
    • /
    • 2014
  • Pyroprocess for treating spent nuclear fuels has been developed based on electrochemical principles. Process simulation is one of the important methods for process development and experimental data analysis and it is also a necessary approach for pyroprocessing. To date, process simulation of pyroprocessing has been focused on electrorefining and there have been not so many investigations on electrolytic reduction. Electrolytic reduction, unlike electrorefining, includes specific features of gas evolution and porous electrode and, thus, different equations should be considered for developing a model for the process. This study summarized required concepts and equations for electrolytic reduction model development from thermodynamic, mass transport, and reaction kinetics theories which are necessitated for analyzing an electrochemical cell. An electrolytic reduction cell was divided and equations for each section were listed and, then, boundary conditions for connecting the sections were indicated. It is expected that those equations would be used as a basis to develop a simulation model for the future and applied to determine parameters associated with experimental data.

Reference Spent Nuclear Fuel for Pyroprocessing Facility Design (파이로공정 시설 개념설계를 위한 기준 사용후핵연료 선정)

  • Cho, Dong-Keun;Yoon, Seok-Kyun;Choi, Heui-Joo;Choi, Jong-Won;Ko, Won-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • An estimation has been made for inventories and characteristics of spent nuclear fuel(SNF) to be generated from existing and planned nuclear power plants based on the 3rd Basic Plan for Electric Power Demand and Supply. The characteristics under consideration in this study are dimensions, a fuel rod array, a weight, $^{235}U$ enrichment, and the discharge burnup in terms of fuel assembly. These are essentially needed for designing a pyroprocessing facility. It is appeared that the anticipated quantity by the end of 2077 is about 23,000 tU for PWR spent nuclear fuel. It is revealed that the proportion of SNF with the initial $^{235}U$ enrichment below 4.5 weight percent(wt.%) is approximately 95 % in total. For SNF with 16$\times$16 fuel rod array the proportion is expected approximately 74% in total. It appears that the average burnup of SNF will be 55 GWd/tU after the medium and/or latter part of 2010s while the average burnup is 45 GWd/tU at present. Finally, a requirement in terms of reference SNF for designing the pyroprocessing facility has been derived from the above-mentioned results. The anticipated SNF seems to be 16$\times$16 Korean Standard Fuel Assembly with a cross section of 21.4 cm$\times$21.4 cm, a length of 453 cm, a mass of 672 kg, the initial $^{235}U$ enrichment of 4.5 wt.%, and the discharge burnup of 55 GWd/tU.

  • PDF

A Study on the Conceptual Development for a Deep Geological Disposal of the Radioactive Waste from Pyro-processing (파이로공정 발생 방사성폐기물 심지층 처분을 위한 개념설정 연구)

  • Lee, Jong-Youl;Lee, Min-Soo;Choi, Heui-Joo;Bae, Dae-Seok;Kim, Kyeong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.219-228
    • /
    • 2012
  • A long-term R&D program for HLW disposal technology development was launched in 1997 in Korea and Korea Reference disposal System(KRS) for spent fuels had been developed. After then, a recycling process for PWR spent fuels to get the reusable material such as uranium or TRU and to reduce the volume of radioactive waste, called Pyro-process, is being developed. This Pyro-process produces several kinds of wastes including metal waste and ceramic waste. In this study, the characteristics of the waste from Pyro-process and the concepts of a disposal container for the wastes were described. Based on these concepts, thermal analyses were carried out to determine a layout of the disposal area of the ceramic wastes which was classified as a high level waste and to develop the disposal system called A-KRS. The location of the final repository for A-KRS is not determined yet, thus to review the potential repository domains, the possible layout in the geological characteristics of KURT facility site was proposed. These results will be used in developing a repository system design and in performing the safety assessment.