• Title/Summary/Keyword: 파워를 고려한 라우팅 프로토콜

Search Result 5, Processing Time 0.022 seconds

Power Aware Routing Protocol based on Both Threshold by Residual Battery Capacity and Signal Strength in Mobile Ad-hoc Network (Mobile Ad-hoc 네트워크에서 Threshold 적용과 신호세기 기반의 효율적인 파워소모 라우팅 프로토콜)

  • Park Gun-Woo;Song Joo-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.1139-1142
    • /
    • 2006
  • Mobile Ad-hoc 네트워크(MANET)에서 각 노드들은 한정된 배터리에 의존하여 통신한다. 이와 같은 제한사항을 극복하기 위해 링크의 안정성을 유지하거나 파워 소모를 고려한 프로토콜에 대한 연구들이 활발히 이루어져 왔다. 하지만 링크의 안정성 또는 파워 소모의 어느 한 측면만을 고려함으로써 링크의 안정성은 높일 수 있으나 파워 소모가 효율적이지 못했다. 반면에 전체 파워소모는 줄일 수 있었으나 파워소모의 균형을 이루지 못함으로써 네트워크 수명을 오래 지속시킬 수 없는 문제점이 발생 했다. 본 논문에서는 배터리 잔량에 대한 threshold를 적용함과 동시에 신호세기를 고려하여 각 노드들의 균형된 파워소모와 네트워크 전체의 파워 소모를 최소화함으로써 네트워크 수명을 오래 지속시키기 위한 프로토콜인 PRTRS(Power Aware Routing Protocol based on Both Threshold by Residual Battery Capacity and Signal Strength in Mobile Ad-hoc Network)를 제안한다. PRTRS는 AODV(Ad-hoc On-demand Distance Vector Routing)를 기반으로 하였다. NS-2 네트워크 시뮬레이션 결과 PRTRS는 특정 노드로 집중되는 트래픽을 분산시켜 파워소모의 균형을 이루고 네트워크 전체의 파워소모를 최소화함으로써 네트워크 수명이 연장됨을 확인하였다.

  • PDF

Residual Battery Capacity and Signal Strength Based Power-aware Routing Protocol in MANET (MANET에서 배터리 잔량과 신호세기를 동시에 고려한 Power-aware 라우팅 프로토콜)

  • Park Gun-Woo;Choi Jong-Oh;Kim Hyoung-Jin;Song Joo-Seok
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.219-226
    • /
    • 2006
  • The shortest path is only maintained during short time because network topology changes very frequently and each mobile nodes communicate each other by depending on battery in MANET(Mobile Ad-hoc Network). So many researches that are to overcome a limitation or consider a power have executed actively by many researcher. But these protocols are considered only one side of link stability or power consumption so we can make high of stability but power consumption isn't efficient. And also we can reduce power consumption of network but the protocol can't make power consumption of balancing. For that reason we suggest RBSSPR(Residual Battery Capacity and Signal Strength Based Power-aware Routing Protocol in MANET). The RBSSPR considers residual capacity of battery and signal strength so it keeps not only a load balancing but also minimizing of power consumption. The RBSSPR is based on AODV(Ad-hoc On-demand Distance Vector Routing). We use ns-2 for simulation. This simulation result shows that RBSSPR can extense lifetime of network through distribution of traffic that is centralized into special node and reducing of power consumption.

An Efficient Core Migration Protocol for Tree Building in Mobile Ad Hoc Multicast Protocol (Ad Hoc네트워크에서 효율적인 코어-기반 멀티캐스트 트리 구축)

  • 이창순;김갑식
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.3
    • /
    • pp.99-104
    • /
    • 2003
  • Ad-hoc is the wireless network and consists of moving Hosts in environments which don't have a network-based Frame. Because ad-hoc is considered as broadcast network and network which has useful benefits, multicast muting protocols have been studied on ad-hoc network For this work we scrutinized ad-hoc and multicast routing protocols presented in previous works. And we presents a protocol for Ad-hoc network.

  • PDF

Base Station Assisted Optimization of Hierarchical Routing Protocol in Wireless Sensor Network (WSN 에서 베이스스테이션을 이용한 계층적 라우팅 프로토콜 최적화)

  • Kusdaryono, Aries;Lee, Kyoung-Oh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.564-567
    • /
    • 2011
  • Preserving energy of sensor node in wireless sensor network is an effort to prolong the lifetime of network. Energy of sensor node is very crucial because battery powered and irreplaceable. Energy conservation of sensor node is an effort to reduce energy consumption in order to preserve resource for network lifetime. It can be achieved through efficient energy usage by reducing consumption of energy or decrease energy usage while achieving a similar outcome. In this paper, we propose optimization of energy efficient base station assisted hierarchical routing protocol in wireless sensor network, named BSAH, which use base station to controlled overhead of sensor node and create clustering to distribute energy dissipation and increase energy efficiency of all sensor node. Main idea of BSAH is based on the concept of BeamStar, which divide sensor node into group by base station uses directional antenna and maximize the computation energy in base station to reduce computational energy in sensor node for conservation of network lifetime. The performance of BSAH compared to PEGASIS and CHIRON based of hierarchical routing protocol. The simulation results show that BSAH achieve 25% and 30% of improvement on network lifetime.

A Routing Protocol for Assuring Scalability and Energy Efficiency of Wireless Sensor Network (WSN의 확장성과 에너지 효율성을 보장하는 라우팅 프로토콜)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Gil-Cheol;Lee, Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.105-113
    • /
    • 2008
  • While the wireless sensor network has a strong point which does not have effect on whole activities of network even though neighboring sensor nods fail activities of some sensor nod or make some functions disappear by the characteristic of similar information detection, it has problems which is slowing down of wireless medium, transfer character with severe error, limited power supply, the impossibility of change by optional arrangement of sensor nods etc. This paper proposes PRML techniques which performs the fittest course searching process to reduce power consumption of entire nods while guarantees the scalability of network organizing sensor nods hierarchically. The proposed technique can scatter the load of cluster head by considering the connectivity with surplus energy of nod and reduce the frequency of communication among the nods. As a result of the analysis in comparison with LEACH-C and HEED technique, PRML technique get efficiency of average 6.4% in energy consuming respect of cluster head, efficiency of average 8% in entire energy consuming respect, and more efficiency of average 7.5% in other energy consuming distribution of network scalability than LEACH-C and HEED technique.

  • PDF