Conventional GrabCut algorithm is semi-automatic algorithm that user must be set rectangle window surrounds the object. This paper studied automatic object detection to solve these problem by detecting salient region based on Human Visual System. Saliency map is computed using Lab color space which is based on color opposing theory of 'red-green' and 'blue-yellow'. Then Saliency Points are computed from the boundaries of Low-Frequency region that are extracted from Saliency Map. Finally, Rectangle windows are obtained from coordinate value of Saliency Points and these windows are used in GrabCut algorithm to extract objects. Through various experiments, the proposed algorithm computing rectangle windows of salient region and extracting objects has been proved.
Kim, Kwangyul;Lim, Jeonghwan;Kim, Songkang;Cho, Junkyung;Shin, Yoan
The Journal of Korean Institute of Communications and Information Sciences
/
v.38A
no.6
/
pp.504-511
/
2013
This paper proposes improved detection schemes for concealed micro-electronic devices using clustering and classification of radio frequency harmonics in order to protect intellectual property rights. In general, if a radio wave with a specific fundamental frequency is propagated from the transmitter of a classifier to a concealed object, the second and the third harmonics will be returned as the radio wave is reflected. Using this principle, we exploit the fuzzy c-means clustering and the ${\kappa}$-nearest neighbor classification for detecting diverse concealed objects. Simulation results indicate that the proposed scheme can detect electronic devices and metal devices in various learning environments by efficient classification. Thus, the proposed schemes can be utilized as an effective detection method for concealed micro-electronic device to protect intellectual property rights.
Kim, Changsik;Jeon, Yongun;Park, Jungsun;Cho, Jin Yeon
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.49
no.1
/
pp.13-20
/
2021
In this paper, a new algorithm is proposed to estimate the damage size by combining the reflected area with the reflected position and extracting contours in proportion to the maximum value of pixels from the visible image. The cumulative summation feature vector algorithm is used to obtain the area of the reflected signal. To get the position of the reflected signal, the signal correlation algorithm is used to decompose the reflected signal from the damage. The proposed algorithm is tested and validated for composite panels. Repetitive experiments are performed and it is confirm that the proposed algorithm is reproducible. Further, it is verified that the damage size can be estimated appropriately by the proposed algorithm.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.3
/
pp.519-526
/
2016
As marine accidents happen frequently, it is required to establish a marine traffic monitoring system, which is designed to improve the safety and efficiency of navigation in VTS (Vessel Traffic Service). For this aim, recently, X-band marine radar is used for extracting the sea surface information and, it is necessary to retrieve wave information correctly and provide for the safe and efficient movement of vessel traffic within the VTS area. In this paper, three different current estimation algorithms including the classical least-squares (LS) fitting, a modified iterative least-square fitting routine and a normalized scalar product of variable current velocities are compared with buoy data and then, the iterative least-square method is modified to estimate wave information by improving the initial current velocity. Through several simulations with radar signals, it is shown that the proposed method is effective in retrieving the wave information compared to the conventional methods.
Proceedings of the Korea Information Processing Society Conference
/
2009.11a
/
pp.623-624
/
2009
본 논문에서는 신경망의 오류 역전파(Backpropagation) 학습 알고리즘을 이용한 얼굴의 정상 비정상을 인식하는 보안 시스템을 제안하였다. 제안된 시스템은 정지영상 및 동영상에서 입력된 얼굴영상을 전처리 단계에서 얼굴영역을 검출하여 $160{\times}160$ 크기의 고정 크기로 확대 및 축소 작업을 거친다. Mosaic 처리와 LaplacianEdge 처리를 거쳐 $40{\times}40$ 크기로 이진화한 정규화 데이터를 Gravity-Center 처리를 한다. 오류 역전파 학습 알고리즘으로 얼굴의 특징을 학습한 후 각종 정상 및 비정상 얼굴 데이터를 이용하여 인식률을 실험 하였다. 실험데이터는 이 분야의 공인 자료인 LFW Face Database[7] 데이터를 사용하였으며, 실험결과는 제안된 방법이 문제 해결에 적합한 접근임을 보여준다.
In this paper, we propose an algorithm to improve target detection rate degradation due to direct blast in a bi-static sonar systems with high duty cycle using an adaptive filters. It is very important to suppress the direct blast in the aforementioned sonar systems because it has a fatal effect on the actual system operation. In this paper, the performance was evaluated by applying the Normalized Least Mean Square (NLMS) and Recursive Least Square (RLS) algorithms to the simulation and sea experimental data. The beam signals of the target and direct blast bearings were used as the input and desired signals, respectively. By optimizing the difference between the two signals, the direct blast is removed and only the target signal is remained. As a result of evaluating the results of the matched filter in the simulation, it was confirmed that the direct blast was removed to the noise level in both Linear Frequency Modultated (LFM) and Generalized Sinusoidal Frequency Modulated (GSFM), and in the case of GSFM, the target sidelobe decreased by more than 20 dB, thereby improving performance. In the sea experiment, it was confirmed that the LFM reduced the level of the transmitted direct wave by 10 dB, the GSFM reduced the level of the transmitted direct wave by about 4 dB, and the side lobe of the target decreased by about 4 dB, thereby improving the performance.
Hyeji Kim;Hyeok Kang;Seongbong Lee;Hyeongseok Kim;Dongjin Lee
Journal of Advanced Navigation Technology
/
v.26
no.6
/
pp.427-433
/
2022
Obstacle detection, collision recognition, and avoidance technologies are required the collision avoidance technology for UAVs. In this paper, considering collinear multiple static obstacle, we propose an obstacle detection algorithm using LiDAR and a collision recognition and avoidance algorithm based on CPA. Preprocessing is performed to remove the ground from the LiDAR measurement data before obstacle detection. And we detect and classify obstacles in the preprocessed data using the K-means clustering algorithm. Also, we estimate the absolute positions of detected obstacles using relative navigation and correct the estimated positions using a low-pass filter. For collision avoidance with the detected multiple static obstacle, we use a collision recognition and avoidance algorithm based on CPA. Information of obstacles to be avoided is updated using distance between each obstacle, and collision recognition and avoidance are performed through the updated obstacles information. Finally, through obstacle location estimation, collision recognition, and collision avoidance result analysis in the Gazebo simulation environment, we verified that collision avoidance is performed successfully.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.3
/
pp.456-463
/
2021
In this paper, Ultra Wide-Band(UWB) radar sensor is employed to detect flying drones and avoid collision in dense clutter environments. UWB signal is preferred when high resolution range measurement is required for moving targets. However, the time varying motion of flying drones may increase clutter noises in return signals and deteriorates the target detection performance, which lead to the performance degradation of anti-collision radars. We adopt a dynamic clutter suppression algorithm to estimate the time-varying distances to the moving drones with enhanced accuracy. A modified Constant False Alarm Rate(CFAR) is developed using an adaptive filter algorithm to suppress clutter while the false detection performance is well maintained. For this purpose, a velocity dependent CFAR algorithm is implemented to eliminate the clutter noise against dynamic target motions. Experiments are performed against flying drones having arbitrary trajectories to verify the performance improvement.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.6
/
pp.627-635
/
2017
Modern warfare is gradually changing into a network war, and information electronic warfare is also progressing. In modern war, electronic warfare is all military activity concerned with electromagnetic field use, such as signal collecting, communication monitoring, information analysis, and electronic attack. The one key function of signal collecting for enemy signal analysis, direction finding, collects the signal radiated from enemy area and then calculates the enemy direction. This paper examined the Watson-Watt algorithm for an amplitude direction finding system and CVDF algorithm for phase direction finding system and analyzed the difference in the direction finding accuracy between in the clean electromagnetic field environment and in the real operating field environment of electronic warfare system. In the real field, the direction finding accuracy was affected by the reflected field from the surrounding obstacles. Therefore, this paper proposesan enhanced direction finding process for reducing the effect. The result of direction finding by applying the proposed process was enhanced above $1.24^{\circ}$ compared to the result for the existing process.
Vibration characteristics which are typical in a cracked rotor can be utilized for detection of crack. The changing trend of harmonics at the second harmonic resonant speed according to the crack depth and the unbalance orientation has been discussed. To characterize the vibration depending on crack orientation, the unbalance and gravitational responses of the cracked rotor are calculated. An algorithm for crack orientation identification is also introduced. A trial mass is attached step by step with even angle interval along a certain circumference, and then the synchronous and second horizontal harmonic compenents of vibration are measured and curve-fitted using least square method. Numerical simulations using this method show good results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.