• 제목/요약/키워드: 파랑 예측 알고리즘

검색결과 149건 처리시간 0.033초

동해안 너울성 고파 예측 알고리즘 (Algorithm of Predicting Swell-like Significant Waves in the East Coast of Korea)

  • 안석진;이병욱;권석재;이창훈
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2329-2341
    • /
    • 2013
  • 본 연구에서는 속초 인근에 설치된 파향 파고계로 관측되는 파랑 자료를 이용하여 동해안 주요지역에 너울성 고파를 예측할 수 있는 알고리즘을 개발하였다. SWAN 모형을 이용하여 연안의 파랑 관측 자료로부터 고파 발생지로 추정되는 외해지점의 파랑 제원을 추정하였다. 그리고, 추정된 파랑 제원을 경계조건으로 하여 파향선 추적법을 사용하여 동해안 주요 지점의 너울성 고파를 예측하였다. 관측지점에서 SWAN 모형과 파향선 추적법에서 예측되는 파랑 제원을 가상의 설정값 또는 관측값과 비교하여 예측알고리즘의 정확성을 검증하였다. 동해안 실시간 파랑관측시스템과 본 연구결과를 활용하면 동해안 너울성 고파의 예측을 향상시킬 수 있다.

개선된 유전자 역전파 신경망에 기반한 예측 알고리즘 (Forecasting algorithm using an improved genetic algorithm based on backpropagation neural network model)

  • 윤여창;조나래;이성덕
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권6호
    • /
    • pp.1327-1336
    • /
    • 2017
  • 본 연구에서는 단기 예측을 위한 자기회귀누적이동평균모형, 역전파 신경망 및 유전자 알고리즘의 결합 적용에 대하여 논의하고 이를 통한 유전자-신경망 알고리즘의 효용성을 살펴본다. 일반적으로 역전파 알고리즘은 지역 최소값에 수렴될 수 있는 단점이 있기 때문에, 여기서는 예측 정확도를 높이기 위해 역전파 신경망 구조를 최적화하고 유전자 알고리즘을 결합한 유전자-신경망 알고리즘 기반 예측모형을 구축한다. 실험을 통한 오차 비교는 KOSPI 지수를 이용한다. 결과는 이 연구에서 제안된 유전자-신경망 모형이 역전파 신경망 모형과 비교할 때 예측 정확도에서 어느 정도 유의한 효율성을 보여주고자 한다.

관측치를 활용한 동해안 너울성 고파 예측 (Prediction of Swell-like High Waves Using Observed Data on the East Coast of Korea)

  • 이창훈;안석진;이병욱;김신웅;권석재
    • 한국해안·해양공학회논문집
    • /
    • 제26권3호
    • /
    • pp.149-159
    • /
    • 2014
  • 본 연구에서는 속초 인근의 파향 파고계로 관측된 파랑 자료를 이용하여 동해안 주요지역에 너울성 고파를 예측하는 알고리즘을 개발하였다. SWAN 모형을 이용하여 연안의 파랑 관측 자료로부터 고파 발생지로 예상되는 외해지점의 파랑 제원을 추정하였다. 추정된 파랑 제원을 경계조건으로 쓰고 SWAN 모형과 파향선 추적법을 사용하여 동해안 주요지역에서의 너울성 고파를 예측하였다. 왕돌초에서 관측한 파랑 자료를 예측 결과와 비교하여 예측알고리즘의 정확성을 검증하였다. 동해안 실시간 파랑관측 시스템과 본 연구결과를 활용하면 동해안 너울성 고파를 보다 정확하게 예측할 수 있다.

유전자알고리즘을 기반으로 하는 정규화 기법에 관한 연구 : 역전파 알고리즘을 이용한 부도예측 모형을 중심으로 (GA-based Normalization Approach in Back-propagation Neural Network for Bankruptcy Prediction Modeling)

  • 태추월;신경식
    • 지능정보연구
    • /
    • 제16권3호
    • /
    • pp.1-14
    • /
    • 2010
  • 역전파 알고리즘은 오랫동안 부도예측모형 관련한 연구에 많이 적용되어왔다. 역전파 알고리즘을 사용하기전에 필히 고려해야 할 중요한 요소들로는 네트워크 구조, 학습요소, 정규화 방법 등이다. 하지만 신경망 성과를 향상시키기 위한 네트워크 구조 및 학습요소 최적화 관련한 연구는 기존의 연구들에서 많이 이루어 졌지만 데이터 정규화와 관련한 연구는 아직 많이 이루어지지 않았다. 따라서 본 연구에서는 유전자 알고리즘을 기반으로 하는 정규화 기법을 제시하였다. 최적의 입력데이터 정규화를 위하여 본 연구에서는 우선 각각의 서로 다른 정규화 기법들을 동일 가중치를 두어 일반화 시켰으며 유전자 알고리즘을 이용하여 최적의 가중치를 찾음으로써 최적화된 입력변수 정규화가 이루어지도록 하였다. 제안한 방법론을 검증하기 위하여 부도예측 데이터를 이용하여 실험을 하였으며 제안하는 방법과 기존 다른 방법들간의 비교를 통하여 그 타당성을 검증하였다.

인공신경망을 이용한 강우예측기법에 관한 연구 (Study on Precipitation Prediction Technique using Artificial Neural Network)

  • 여운기;지홍기;이순탁
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1412-1416
    • /
    • 2009
  • 최근의 극심한 기상이변으로 인하여 발생되는 이상호우의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우를 예측하기 위해 많은 방법들이 사용되고 있으나 강우의 메커니즘은 매우 복잡하여 수문순환과정에서 가장 예측하기 힘든 요소이며, 추계학적 예측모형이나 확정론적 예측모형 모두에 있어 상당한 불확실성을 내포하고 있다. 기상예측모형 등을 이용하여 강우예측에 대한 정도를 높여가고는 있으나 많은 수문학적 모형에서 요구하는 시공간적으로 정도가 높은 강우를 예측하기에는 힘들다. 인공신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 강우사상을 과거의 자료로부터 신경망의 수학적 알고리즘을 통해 강우의 예측에 적용할 수 있을 것이다. 따라서 본 연구에서는 이러한 인공신경망의 기법 중 오류 역전파 알고리즘을 통하여 과거의 강우사상들을 입 출력 자료로 이용하여 인공신경망을 학습시켜 강우의 예측에 대한 정도를 높이도록 하였다.

  • PDF

유전자신경망을 이용한 시계열예측 (Time Series Forecasting Based On Genetic Neural Network)

  • 윤여창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.1106-1108
    • /
    • 2010
  • 이 연구에서는 유전자알고리즘과 인공신경망의 특성을 결합한 유전자신경망모형에 대하여 논의한다. 이 모형을 이용하여 단기 시계열자료를 예측한다. 그 예측 결과는 유전자신경망모형이 역전파 신경망모형에서 보다 더 작은 예측오차를 보였다. 역전파 신경망보다 더 효과적임을 보임으로써 유전자신경망모형을 이용한 시계열자료 예측이 보다 효율적인 방법임을 제시한다.

신경망을 이용한 컨테이너 물동량 예측에 관한 연구 (A Study on the Forecasting of Container Volume using Neural Network)

  • 박성영;이철영
    • 한국항해항만학회지
    • /
    • 제26권2호
    • /
    • pp.183-188
    • /
    • 2002
  • 컨테이너 물동량 예측은 항만과 항만의 개발에 있어서 매우 중요하다. 일반적으로 이동평균법, 지수평활법, 회귀분석과 같은 통계적인 방법들은 물동량 예측에서 많이 사용되어졌다. 하지만, 컨테이너 물동량 예측에 영향을 주는 여러 가지 요소들을 고려해 보면 다중병렬처리시스템인 신경망을 이용하는 것이 효과적이다. 본 연구는 신경망의 역전파학습알고리즘을 이용하여 컨테이너 활동량을 예측하였다. 신경망을 이용하여 영향력 있는 요소들을 선별하였으며, 선별된 요소들을 이용하여 물동량 예측을 하였다. 또한 제안된 신경망 알고리즘과 통계적인 방법의 예측들을 비교하였다.

데이터 기반 홍수 도달시간 및 수위예측 시뮬레이터 개발 (Development of Data Driven Flood Arrival Time and Water Level Estimation Simulator)

  • 이호현;이동훈;홍성택;김성훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.104-104
    • /
    • 2022
  • 임진강 수계는 북측 지역이 다수를 차지하는 유역 특성으로 예고 없는 상류 급방류, 강우 등으로 인해 댐 운영에 근본적 어려움이 있으며, 이에 따라 홍수조절지 및 댐 하류 계측 가능 지역의 취득 자료를 고려한 하천 수위 변화에 대한 사전 예측을 필요로 하고 있다. 홍수기 하천 도달시간 및 수위예측 기법으로는 물리 기반 및 데이터 기반 모델들이 다양하게 연구되어 왔으며, 일부 연구성과들은 현업에 활용하고 있다. 물리기반 모델은 하천 지형 변화에 대한 자료 취득 및 분석에 많은 시간을 요하는 단점은 있으나, 설명 가능한 모델을 구현할 수 있을 것으로 사료 된다. 반면, 데이터 기반 인공지능 모델은 짧은 시간 및 비용으로 모델을 개발할 수 있으나, 복잡한 알고리즘구현 시 설명이 불가하여 일관성을 의심 받을 수 있다. 본 논문에서는 홍수 도달시간과 하류 수위 상승에 대하여 설명 가능한 인공지능 알고리즘 및 시뮬레이션 프로그램을 개발하고자 하였다. 홍수 도달시간 예측은 기존 조견표 방식에서 고려하지 않았던 홍수파의 영향을 추가 변수화 하고, 데이터의 전후처리를 통하여 도달시간을 예측하였다. 실시간 하류 수위 예측은 댐 방류량, 주변 강우, 조위 등을 고려하여 도달시간 후 수위를 예측할 수 있도록 구현하였으며, 자료 동화 기술을 일부 적용하였다. 미래 방류조건에 대한 시뮬레이션을 위해서는 미래 방류량, 예상 강우 입력 시 하천 지점별 수위 상승을 예측할 수 있도록 알고리즘 및 프로그램을 개발하였다. 이를 구현하기 위하여 다양한 인공지능 알고리즘을 이용한 학습, 유전자 알고리즘을 이용한 가중치 학습 제한 조건내 최적화, 수위파와 조위파의 중첩의 정리 등을 이용하여 예측 정확도 및 신뢰성을 제고 하였다. 인공지능 분석결과의 현업활용성 제고를 위하여 시뮬레이터 프로그램을 개발하여 현업에 적용하였다.

  • PDF

능동 소음 제어 통풍관의 개발 (Development of active noise control ventilation tube)

  • 하상모;박승규;안호균;윤태성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1815-1816
    • /
    • 2006
  • 소음은 환경 오염원의 하나로서 사람에게 육체적, 정신적 피해를 발생시킨다. 이에 소음 제어 기술의 필요성이 증대하였고, 그 중에서 제어가 까다롭고 고비용을 요구하는 저주파 소음 제어 기술의 개발이 확대되고 있다. 따라서 본 연구에서는 저주파의 주기적인 특성을 가지는 1차원 평면파 소음에 대한 능동 제어를 위해 기존의 적응 피드포워드 방법의 단점을 보완하는 적응 피드백 방법을 이용한 능동 소음 제어 시스템을 구성하고 능동 소음 제어 실험을 수행하였다. 이를 위해 소음원과 제어 음원을 가지는 덕트 형상의 실험 장치를 구성하였다. 제어기 설계를 위해 전파 소음을 예측하는 선형 예측법을 적용한 적응 디지털 필터를 구성하였으며 적응 알고리즘으로 Filtered-X LMS 알고리즘을 이용하였다. 제어기는 제어 알고리즘을 프로그램화하여 DSP에 입력함으로써 구성하였다. 실험에 사용된 소음은 500[Hz] 이하의 단일 주파수의 정현파 소음을 사용하였으며, 실험결과 음압 감소의 효과를 볼 수 있었다. 능동 소음 제어의 기술을 개발하여 하드웨어(덕트)의 모양 및 구조, 제어기의 종류 및 처리 속도, 주파수나 크기와 같은 특성이 급격히 변하는 소음의 경우에 능동적으로 소음을 제어할 수 있으며, 저주파 소음을 발생시키는 관형 연소기와 같은 장치 및 여러 분야에 응용이 가능하도록 하였다.

  • PDF

SOM에 강우-유출 예측모형 개발에 관한 연구 (Development of Rainfall-Runoff Prediction Model for Self Organizing Map)

  • 김용구;진영훈;이한민;박성천
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.301-306
    • /
    • 2006
  • 본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저..갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 선행 유출량의 지속성을 갖는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 도입하여 예측모형의 전처리 과정으로 이용하였다. 이는 기존의 인공신경망 모형이 하나의 모형을 구성하여 유출량의 전 범위에 해당하는 자료를 예측하는 방법을 개선한 것으로 SOM에 의해 패턴이 분류된 강우-유출관계의 각 패턴별 예측모형을 통해 분류된 자료들의 예측을 수행하는 방법이다. 이와 같이 SOM을 강우-유출예측모형의 전처리과정으로 이용함으로서 기존의 인공신경망 연구에서 야기된 현상들을 해결할 수 있었고, 예측력 또한 기존의 인공신경망 모형의 결과에 비해 우수하였다.

  • PDF