• Title/Summary/Keyword: 파랑하중해석

Search Result 158, Processing Time 0.024 seconds

Dynamic Analysis of Steel Jackets under Wave and Earthquake Loadings II : Pre/Post Processor and Numerical Analysis (파랑 및 지진하중을 받는 스틸자켓의 동적해석 II : 전/후처리 및 수치해석예)

  • 김문영;박기현;이상호;김동욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.13-23
    • /
    • 2001
  • In the companion paper, F. E. formulation for the geometric and plastic non-linear analysis of steel jacket structures subjected to wave and earthquake loadings was presented and the main processor was developed. In this paper, the pre/post processor are developed in order to analyze the output results effectively as well as to prepare the input data efficiently. Furthermore, the numerical examples are presented and discussed for linear and non-linear analysis of steel jackets under environmental loadings.

  • PDF

Load and Structural Analysis of an Offshore Wind-Turbine Foundation with Weight Control Functionality (자중조절 기능이 있는 해상풍력 지지구조의 하중 및 구조해석)

  • Oh, Minwoo;Kim, Donghyun;Kim, Kiha;Kim, Seoktae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.453-460
    • /
    • 2016
  • Offshore wind turbines are divided into an upper wind turbine and a lower support structure. Offshore wind turbine system is required to secure high reliability for a variety of external environmental conditions compared to ground wind turbines because of additional periodic loads due to ocean wave and current effects. In this study, extreme load analyses have been conducted for the designed offshore wind turbine foundation with weight control functionality using computational fluid dynamics (CFD) then structural analyses have been also conducted to investigate the structural design requirement.

Direct Numerical Simulation on the Nonlinear Dynamic Responses among Wave, Structure and Seabed ($\cdot$구조물$\cdot$지반의 비선형 동적응답해석을 위한 직접수치해석기법의 개발)

  • Hur Dong Soo;Kim Chang Hoon;Lee Kwang Ho;Kim Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.86-97
    • /
    • 2005
  • Accurate estimation of the wave-induced pore water pressure in the seabed is key factor in studying the stability of the seabed in the vicinity of coastal structure. Most of the existing numerical models for wave structure seabed interaction have been linked through applying hybrid numerical technique which is analysis method separating the wave field and seabed regime. Therefore, it is necessary to develope a numerical model f3r simulating accurately wave$\cdot$structure$\cdot$ seabed interaction under wave loadings by the single domain approach for wave field and seabed regime together. In this study, direct numerical simulation is newly proposed. In this model, modeled fluid drag has been used to detect the hydraulic properties according to the varied geometrical shape inside the porous media by considering the turbulence resistance as well as laminar resistance. Contrary to hybrid numerical technique, direct numerical simulation avoids the explicit formulation of the boundary conditions at the fluid/porous media interface. A good agreement has been obtained by the comparison between existed experimental results by hydraulic model test and direct numerical simulation results far wave $\cdot$structure$\cdot$seabed interaction. Therefore, the newly proposed numerical model is a powerful tool for estimating the nonlinear dynamic responses among a structure, its seabed foundation and water waves.

Design of Breakwater for the Safety of VLFS (VLFS 안전성 확보를 위한 방파제 설계 연구)

  • Cho, K.N.;Yu, K.H.;Kang, J.M.;Yoon, M.C.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.217-223
    • /
    • 2002
  • 초대형부유식 해상구조물의 안전성 확보를 위한 방파제 설계를 수행하여 그 효용성을 검증하고 관련 구조물의 설계에 대한 지침을 제공하였다. 초대형부유식 구조물의 설치 위치에 따라 파랑 하중을 계산하였고, 이 하중에 대한 최적의 직립식 방파제 단면을 통용되고 있는 Goda 식에 의하여 scantling 하였다. 케이슨의 안전성 검증을 위하여 유한요소해석을 수행하였고, 최종적으로 VLFS의 안전성 확보를 위한 하나의 방파제 설계도를 제시하였다.

  • PDF

ICA 기법에 의한 플로팅 구조물의 강체 거동 특성에 관한 연구

  • Jeong, Gi-Beom;Hwang, Jae-Seung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.119-121
    • /
    • 2011
  • 플로팅 구조물의 거동은 함체의 크기에 따라 많은 영향을 받는 것으로 알려져 있다. 그에 따라 함체의 거동을 표현하기 위한 해석모델은 해석의 단순성, 파랑하중과의 상호작용의 연계정도를 고려하여 그 형태 또한 달라지게 된다. 해석모델에는 함체에 발생하는 진동을 효과적으로 저감시키기 위한 진동저감시스템을 포함하는 경우도 있다. 함체의 해석모델에 진동저감시스템의 해석모델이 연계되면 이들 해석모형이 상호결함된 통합모형은 더욱 복잡한 경향을 가지게 된다. 본 연구에서는 함체의 해석모형을 강체거동을 하는 단순한 모형으로 가정하고 해석모형이 가지는 동적특성을 ICA기법을 통하여 효과적으로 추정하는 기법을 다룬다. 이를 위하여 실험과 ICA 기법을 이용하여 동적추정이 가능한지를 평가해보고 이를 플로팅 구조물에 적용하기 위한 기법을 다룬다.

  • PDF

Wave Load on Fixed Offshore Gravity Platform (중력식(重力式) 고정해양구물(固定海洋構物)에 작용(作用)하는 파랑하중(波浪荷重)에 관한 연구(硏究))

  • Kim, Chul;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.87-95
    • /
    • 1988
  • In the arctic offshore regions, massive offshore gravity platforms are recommended to be construced because of severe environments. In such structures which is so large that its characteristic length is of the order of the wave length, wave-structure interaction problem has been solved using linear diffraction theory. Structural analysis of the large scale offshore structures requires wave force distribution along depth and wave pressure distribution on the body surface. In this study, existing computer program which calculates the total wave force acting on axisymmetric bodies has been modified to calculate wave force distribution along depth and wave pressure distribution on the body surface. Numerical results of pressure distribution for a fixed vertical cylinder obtained from this analysis has been compared with the results of an analytic solution of MacCamy-Fuchs, and good agreements has been obtained. It is desirable to use 6 in the case of analytic solution, and 5 in the case of numerical solution as the Fourier Mode of Green function. The results in this study are expected to be utilized for structural analysis such as pseudo-static analysis, dynamic analysis and fatigue analysis.

  • PDF

Dynamic Analysis of Guyed Tower Subjected to Random Waves (랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석)

  • 유정선;윤정봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF

Analysis of Wave Load and Mooring System for Ocean Monitoring Facilities - About an estimation method for horizontal force of circular pile in sand - (해상관측시설을 위한 파랑하중과 계류계 해석 -모래중에 뭍힌 원형파일의 수평력 추정방법을 중심으로-)

  • Yoon Gil Su;Kim Yong Jig;Kim Dong Joon;Kang Sin Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.1
    • /
    • pp.102-111
    • /
    • 1998
  • Ocean monitoring facilities are divided into two types, fixed type and floating type. This paper deals with wane load calculation and mooring system for a floating monitoring facility. Wave load and drift forces are calculated for an example case of floating monitoring buoy To enlarge holding power of anchor, circular pile model test was performed. A program for horizontal force of circular pile in sand was made and the calculated result showed fairy good agreement with the result of model test. It is expected that this method will provide good estimation for the holding power of the prototype of circular pile anchor which is relied upon SCUBA activity for installation.

  • PDF

Dynamic Nonlinear Analysis of Ocean Cables Subjected to Wave Forces (파력을 받는 해양케이블의 동적 비선형 해석)

  • 김문영;김남일;이정렬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-188
    • /
    • 1999
  • Kim et al.(I999) presented a non-linear finite element formulation of spatial ocean cables using multiple noded cable elements. The initial equilibrium state of ocean cables subjected to self-weights, support motions, and current forces was determined using the load incremental method and free vibration analysis were performed considering added mass, In this paper, the methods to generate regular and irregular waves and calculate wave forces due to these waves are discussed and challenging example problems are presented in order to investigate dynamic non-linear behaviors of ocean cables subjected to wave loadings.

  • PDF

An Efficient Algorithm in Spectral Fatigue Analysis of Ship Structures (선체의 스펙트럼 피로해석에 대한 효율적인 계산방법)

  • Jeung-Je Kim;Bum-Sang Yoon;Park-Dal-Chi Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.93-101
    • /
    • 1993
  • This paper deals tilth an efficient algorithm in spectral fatigue analysis of ship structures. The concept of stress influence coefficients is suggested in order to obtain stress transfer functions efficiently which are the structural responses for unit load components. Strip method is applied to obtain the motion response and pressure distributions exerted on the hull. Since a number of the structural analysis should be performed for the various wave frequencies and heading angles in the spectral analysis, the algorithm developed in this study improves the efficiency of the analysis. Finally, the calculation example with application to this concept is shown in this paper.

  • PDF