• Title/Summary/Keyword: 파랑투과

Search Result 95, Processing Time 0.017 seconds

A Numerical Study on the Effectiveness of a Floating Breakwater in Wonjeon Port (부방파제를 이용한 원전항의 정온효과 수치해석)

  • Lee Jeong-Lyul;Song Museok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.23-30
    • /
    • 2005
  • A numerical scheme is proposed which is applicable to the evaluation of wave field containing floating structures, and the method is utilized to estimate the effect of the floating breakwaters to be installed in Wonjeon port near Masan. The model is based on the mild-slope equation which is widely accepted for the calculation of wave modulation near shores and an additional term is introduced to consider the wave scattering associated with the thin floating structures such as floating breakwaters. The tranquility in Wonjeon port with the floating breakwater in the east side is calculated and compared with the one with a bottom-fixed breakwater. The present method is believed to provide an efficient way of quantitative measurement of the performance of floating breakwaters.

  • PDF

Scattering of Oblique Waves by an Inanite Flexible Membrane Breakwater (유연막 방파제에 의한 경사파의 산란)

  • 조일형;홍석원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.219-226
    • /
    • 1995
  • The wave interaction with flexible membrane such as PVC and PU fabrics is studied to prove its applicability to portable breakwaters. To analyze the wave deformation due to the flexible membrane. eigen-function expansion method is employed. The fluid domain is seperated into two regions. The velocity potential in each regions and the deformation of membrane are coupled by the body boundary conditions. Herein the deformation of membrane is obtained by solving the membrane equation. As a numerical example, transmission and reflection coefficients according to the change of several design parameters such as tensile force. mooring line stiffness and membrane height are investigated. It is found that the efficiency of flexible membrane breakwater is significantly affected by these design parameters. The angle of incident wave is an important role to the performance of breakwater. Finally we conclude that flexible membrane can be used to engineering material for the future breakwaters.

  • PDF

Effect of Energy Loss by a Vertical Slotted Wall (직립 슬릿벽에 의한 에너지 손실효과)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.295-303
    • /
    • 2015
  • The eigenfunction expansion method is appled for the wave scattering by a vertical slotted, where both the inertial and quadratic drag terms are involved. Quadratic drag term representing the energy loss is linearized by the application of socalled equivalent linearization. The drag coefficient, which was empirically determined by Yoon et al.(2006) and Huang(2007) is used. Analytical results are verified by comparison to the experimental results conducted by Kwon et al.(2014) and Zhu and Chwang(2001). Using the developed design tool, the effect of energy loss by a vertical slotted wall is estimated with various design parameters, such as porosity, submergence depth, shape of slits and wave characteristics. It is found that the maximum value of energy loss across the slotted wall is generated at porosity value less than P = 0.1. The present solutions can provide a good predictive tools to estimate the wave absorbing efficiency by a slotted-wall breakwater.

Interferometric Color Display Using Micromechanically Coupled Digital Mirror Arrays (기계적으로 연동된 디지털 미소거울을 이용한 광간섭형 컬러 디스플레이 구현)

  • Han, Won;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.487-493
    • /
    • 2012
  • We present interferometric modulators that reproduce RGB colors through the selective actuation of mechanically coupled mirror arrays having identical air gaps. The conventional transmittive interferometric modulators need additional backlights, which leads to high power consumption. The previous reflective interferometric modulators using ambient lights need three different air gaps for reproducing the three RGB colors, thus giving rise to process complexity. For process simplicity, we propose the use of reflective interferometric modulators that are capable of producing green, blue, red, and black colors with the aid of mechanically coupled mirrors with identical air gaps. In an experimental study, the present interferometric modulators reproduce green, blue, and red colors at the switching modes (000), (010), and (101). The spectrum peaks for the colors are measured at the wavelengths $511{\pm}5nm$, $478{\pm}3nm$, and $644{\pm}9nm$, respectively, with the bandwidths being $60{\pm}1nm$, $45{\pm}2nm$, and $105{\pm}4nm$, respectively; further, the maximum intensities of the colors are $77{\pm}5%$, $73{\pm}2%$, and $81{\pm}5%$, respectively. The black spectrum is measured below the intensity of $27{\pm}0%$. Thus, we experimentally demonstrate the color reproduction capability of interferometric modulators fabricated by using a simple process.

Variation Characteristics of Wave Field around Three-Dimensional Low-Crested Structure (3차원저천단구조물(LCS) 주변에서 파동장의 변동특성)

  • Lee, Jun Hyeong;Bae, Ju Hyun;An, Sung Wook;Lee, Kwang Ho;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.180-198
    • /
    • 2019
  • In recent years, countries like Europe and Japan have been involved in many researches on the Low-Crested Structure (LCS) which is the method to protect beach erosion and it is regarded as an alternative to the submerged breakwaters, and compiled its results and released the design manual. In the past, studies on LCS have focused on two-dimensional wave transmission and calculating required weight of armor units, and these were mainly examined and discussed based on experiments. In this study, three-dimensional numerical analysis is performed on permeable LCS. The open-source CFD code olaFlow based on the Navier-Stokes momentum equations is applied to the numerical analysis, which is a strongly nonlinear analysis method that enables breaking and turbulence analysis. As a result, the distribution characteristics of the LCS such as water level, water flow, and turbulent kinetic energy were examined and discussed, then they were carefully compared and examined in the case of submerged breakwaters. The study results indicate that there is a difference between the flow patterns of longshore current near the shoreline, the spatial distribution of longshore and on-offshore directions of mean turbulent kinetic energy in case of submerged breakwaters and LCS. It is predicted that the difference in these results leads to the difference in sand movement.