• Title/Summary/Keyword: 파랑주기

Search Result 236, Processing Time 0.035 seconds

콘크리트 함체의 강성변화가 상부구조물의 응답에 미치는 영향

  • Lee, Yeong-Uk;Park, Jeong-A;Chae, Ji-Yong;Choe, Ji-Hun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.128-130
    • /
    • 2011
  • 플로팅 구조물은 파랑하중의 영향에 따라 함체가 변형하게 되며, 이러한 변형이 상부구조물에 영향을 주게 된다. 함체의 강성변화 및 파랑의 주기변화에 따라 해석을 수행한 결과 함체의 강성이 증가할수록 모멘트는 감소하며, 축력에 대한 영향은 미미하다. 함체의 강성이 같다면 파랑의 주기가 길어질수록 모멘트는 증가한다.

  • PDF

Characteristics of Harbor Oscillation Variation due to the Large-scale Development (대규모 개발로 인한 항만 부진동 변화 특성)

  • Ha, Chang-Sik;Kim, Kang-Min;Baek, Dong-Jin;Lee, Joong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.124-126
    • /
    • 2016
  • 해안역에서의 대규모 개발은 파랑에너지의 전파에 상당한 변화를 초래한다. 특히, 항만내로 전파되는 파랑장을 변화시켜 기존의 에너지 전달체계에 큰 영향을 야기한다. 따라서, 이러한 파랑에너지의 변화를 사전에 예측하여 항만내의 선박이나 항만구조물의 피해를 막을 수 있다. 그러나 일반적으로 수행되는 항만내의 파랑장 검토 즉, 정온도 검토는 주로 공학적으로 문제가 되는 주기 10~20sec의 풍파와 너울성 파랑에 대하여 수행되고 있다. 그러나 실제 현장에서는 20sec 이상의 장주기 파랑에 의한 선박이나 항만구조물에 상당한 피해를 가져오기도 하지만 이로 인해 연간 부두 접안율이 낮아 항만운영에 어려움을 겪고 있다. 본 실험은 대규모 개발에 따른 장주기 파랑에 의한 반응특성과 부진동의 영향을 검토하였다. 특히, 항내 수제선에 개발이 집중적으로 이루어져 내륙측으로 항만수역을 보완하거나 변경이 어려운 경우 장주기파로 인한 부진동의 영향을 저감하기 위한 시도로 공진수역을 도입하였으며, 이에 대한 반응 특성을 분석하여 장래 항만 재배치 계획에 반영할 수 있는 근거가 될 수 있을 것으로 본다.

  • PDF

Analysis of the Variation Pattern of the Wave Climate in the Sokcho Coastal Zone (속초 연안의 파랑환경 변화양상 분석)

  • Cho, Hong-Yeon;Jeong, Weon-Mu;Baek, Won-Dae;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.120-127
    • /
    • 2012
  • Exploratory data analysis was carried out by using the long-term wave climate data in Sokcho coastal zone. The main features found in this study are as follows. The coefficient of variations on the wave height and period are about 0.11 and 0.02, respectively. It also shows that the annual components of the wave height and period are dominant and their amplitudes are 0.24 m and 0.56 seconds, respectively. The amount of intra-annual variation range is about two times greater than that of the inter-annual variation range. The distribution shapes of the wave data are very similar to the log-normal and GEV(generalized extreme value) functions. However, the goodness-of-fit tests based on the KS test show as "rejected" for all suggested density functions. Then, the structure of the timeseries wave height data is roughly estimated as AR(3) model. Based on the wave duration results, it is clearly shown that the continuous and maximum duration is decreased as a power function shape and the total duration is exponentially decreased. Meanwhile, the environment of the Sokcho coastal zone is classified as a wave-dominated environment.

Analysis and Reduction of Longwave Response in a Harbor (항만에서의 장주기파랑반응 분석과 저감대책 연구)

  • Yoo, Jae-Woong;Kim, Kang-Min;Baek, Dong-Jin;Kwon, Seong-Min;Lee, Joong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.353-354
    • /
    • 2018
  • 스웰 등 장주기파랑은 높은 에너지를 갖고 있어서 바람이 없어도 에너지가 사라지지 않고 전파되어 항만에 이르게 되고, 차폐된 항내수역에서 파고가 증폭되어 대형선박의 접이안과 하역작업을 중단시키는 경제적 손실을 야기한다. 본 실험은 대규모 개발에 따른 장주기 파랑에 의한 반응특성과 부진동의 영향을 검토하였다. 특히, 항만확장외에 외역에 추가적 개발을 위한 매립을 고려하여 항만정온도와 장주기 반응 특성을 파악하여 가능한 대책방향을 검토하고자 하였다.

  • PDF

플로팅 함체와 상호 거동에 따른 상부 골조의 모멘트 증대효과

  • Lee, Yeong-Uk;Park, Jeong-A;Choe, Ji-Hun;Chae, Ji-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.198-199
    • /
    • 2011
  • 플로팅 함체는 육상과 달리 지진하중의 영향을 받지 않으며 파랑하중의 영향을 크게 받는다. 파랑하중에 대한 안전성을 확보하기 위하여 범용구조해석 프로그램을 이용하여 해석하였다. 상부구조물의 영향을 확인하기 위하여 함체의 밀도를 변화시켜 상부하중에 대한 함체의 변위 응답을 확인을 한 결과, 밀도에 따른 함체 거동의 변화는 미미하였다. 해석을 통해 얻은 각 주기별 변위를 하중에 적용한 상부구조물의 모멘트 증가비는 파랑하중의 주기가 단주기에서 장주기로 갈수록 감소하는 양상을 보였으며, 축력은 파랑주기의 영향을 적게 받는 것으로 나타났다.

  • PDF

Characteristics of Storm Waves at Gangneung port Based on the Wave Hindcasting (파랑 후측 모의 실험 기반 강릉항 폭풍파랑 분석)

  • Ahn, Kyungmo;Hwang, Soon-mi;Chun, Hwusub
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.375-382
    • /
    • 2016
  • In the present study, the wave hindcasting has been performed, and then the characteristics of storm waves at Gangnueng port was investigated, in which the high waves are observed. Comparing the numerical results with the wave measurements at Gangneung port, Niigata, and Hamada, there were good agreements between them. In particular, the Pearson correlation coefficients of significant wave heights and peak periods at Gangneung port were 0.92 and 0.72, respectively. Then the extreme wave analysis on the significant wave heights was carried out for the estimation of the frequency of storm waves. In this analysis, the storm waves over the threshold were fitted to GPD(Generalized Pareto Distribution). According to this analysis, the return period of the storm wave on February, 24, 2008, one of the large storm waves at Gangneung port, was 8.2 months. Among the computed significant wave heights larger than one-year wave, 58.3% of them were resulted from the storm, while the others were from the typhoon. Additionally, the regression analysis on the waves larger than one-month wave has been conducted, and then the relationship between the computed significant wave heights and the significant wave period, $T_{1/3}=7H_s^{0.25}$ was obtained.

On Statistical Properties of the Extreme Waves in Hong-do Sea Area During Typhoons (홍도 해역에서 태풍 중 극한파의 통계적 특성에 대한 연구)

  • Ryu Hwanajin;Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.47-55
    • /
    • 2004
  • In this paper, The statistical properties of ocean waves in the sea area of Hong-do, Korea are examined based on 1998-2002's wave data from a directional wave buoy. Wave data aquisition rate, mean wave heights, frequency of wave direction are summarized. Wave height and period scatter diagrams and n-year return period wave heights are estimated. Wave periods of maximum wave heights are also estimated. Large amplitude wave characteristics during the typhoon Prapiroon in 2000, Rusa in 2002 are also examined.

  • PDF

Vibration Control of Offshore Platform using Tuned Mass Damper (동조질량감쇠기를 이용한 해양구조물의 진동제어)

  • Kim, Ju Myung;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.73-79
    • /
    • 2004
  • Tuned Mass Damper (TMD) was applied to control the vibration of an offshore structure due to ocean waves. The errors caused by the linearization of the fluid-structure interaction effect and the phenomena when using the linearized equation of motion in TMD design were analyzed. To determine the performance of TMD in controlling vibration, both regular waves with varying periods and irregular waves with different significant wave heights were used. When the offshore structure received regular waves with a period similar to the first natural period of structure. TMD performed well in terms of response reduction. Such was not the case for the other periods. however, In the case of irregular waves, TMD triggered the reduction of structural response for waves with relatively small significant wave height. For irregular waves with relatively big significant wave height, however, TMD did not show any control effect. Therefore, TMD is useful in reducing offshore structural vibration due to ambient waves, thereby helping secure fatigue life.

Analysis of the Wave Spectral Shape Parameters for the Definition of Swell Waves (너울성파랑 정의를 위한 파랑스펙트럼의 형상모수 특성 분석)

  • Ahn, Kyungmo;Chun, Hwusub;Jeong, Weon Mu;Park, Deungdae;Kang, Tae-Soon;Hong, Sung-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.394-404
    • /
    • 2013
  • In the present study, the characteristics of spectral peakedness parameter $Q_p$, bandwidth parameter ${\varepsilon}$, and spectral width parameter ${\nu}$ were analyzed as a first step to define the swell waves quantitatively. For the analysis, the joint probability density function of significant wave heights and peak periods were newly developed. The MCMC(Markov Chain Monte Carlo) simulations have been performed to generate the significant wave heights and peak periods from the developed probability density functions. Applying the simulated significant wave heights and peak periods to the theoretical wave spectrum models, the spectral shapes parameters were obtained and analyzed. Among the spectral shape parameters, only the spectral peakedness parameter $Q_p$, is shown to be independent with the significant wave height and peak wave period. It also best represents the peakedness of the spectral shape, and henceforth $Q_p$ should be used to define the swell waves with a wave period. For the field verification of the results, wave data obtained from Hupo port and Ulleungdo were analyzed and results showed the same trend with the MCMC simulation results.

A Study on Estimation of Allowable Wave Height for Loading and Unloading of the Ship Considering Ship Motion (계류선박의 동요량을 고려한 하역한계파고 산정 방법에 관한 연구)

  • Kwak, Moon Su;Moon, Yong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.873-883
    • /
    • 2014
  • This study proposed an estimation method of allowable wave height for loading and unloading of the ship considering ship motion that is affected by ship sizes, mooring conditions, wave periods and directions. The method was examined validity by comparison with wave field data at pier $8^{th}$ in Pohang new harbor. The wave field data obtained with wave height of 0.10~0.75m and wave period of 7~13s in ship sizes of 800~35,000ton when a downtimes have occurred. On the other hand, the results of allowable wave height for loading and unloading of the ship in this method have obtained with wave heights of 0.19~0.50m and wave periods of 8~12s for ship sizes of 5,000, 10,000 and 30,000ton. Thus this method well reproduced the field data respond to various a ship sizes and wave periods. And the results of this method tended to decrease in 16~62% when have considered long wave, and it is decreased in 0~46% when didn't consider long wave than design standards in case of the ship sizes of 5,000~30,000ton, wave period of 12s and wave angle of $75^{\circ}C$. The allowable wave heights for loading and unloading of the ship proposed by design standards are didn't respond to various the ship sizes and wave periods, and we have found that the design standards has overestimated on smaller than 10,000ton.