• Title/Summary/Keyword: 파동전달

Search Result 87, Processing Time 0.028 seconds

Powering Analysis of Oscillating Foil Moving in Propagating Wave Flow Field (전파하는 파동유장 중 전진하며 동요하는 2차원 날개의 동력해석)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.229-235
    • /
    • 2019
  • In this study, a two-dimensional oscillating foil with forward speed in a propagating wave flow field was considered. The time-mean power to maintain the heaving and pitching motions of the foil was analyzed using the perturbation theory in an ideal fluid. The power, which was a non-linear quantity of the second-order, was expressed in terms of the quadratic transfer functions related to the mutual product of the heaving and pitching motions and incoming vertical flow. The effects of the pivot point and phase difference among the disturbances were studied. The negative power, which indicates energy extraction from the fluid, is shown as an example calculation.

Characteristics of Dynamic Wave Propagation in Peridynamic Analysis with Nonlocal Ghost Interlayer (가상 층간 구조 페리다이나믹 해석의 파동 전파 특성 검토)

  • Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.257-263
    • /
    • 2019
  • Multilayered structures include lamination by relatively thick plies and thin interlayers. For efficient peridynamic analysis of dynamic fracturing multilayered structures, the interlayer is modeled using ghost peridynamic particles while the ply is formulated via real peridynamics. With the nonlocal ghost interlayer, one may keep the discretization resolution low for the ply. In this study, the characteristics of dynamic wave propagation through the nonlocal ghost interlayer in peridynamic analysis are investigated. It is observed that the interlayer not only binds adjacent plies, but also significantly influences energy transfer between plies, and thereby their deformation and motion. In addition, near a surface or boundary, peridynamic particles do not have a full nonlocal neighborhoods. This causes the effective material properties near the surface to be different from those in the bulk. Surface correction based on neighborhood volumes is employed. The impact of surface correction on wave propagation in multilayered structures is investigated.

Measurement of Dynamic Properties of Concrete Structures Using Beam Transfer Function Methods (보 전달함수법을 이용한 콘크리트 구조물의 동특성 측정)

  • Kim, Seung-Joon;Yoo, Seung-Yup;Jeong, Yeong;Jun, Jin-Yong;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.950-953
    • /
    • 2006
  • The floor impact noise of concrete structures in apartments buildings is affected from the flexural wave propagation characteristics. Accordingly, the measurement of wave propagation characteristics is required for suggestion of efficient method to reduce the impact noise. The purpose of this article is to propose an experimental technique to measure dynamic properties of concrete structures. The method was proposed using the flexural wave propagation characteristics. Wave speeds, bending stiffness and their loss factors are estimated from which the vibration dissipation capabilities are investigated. Several different concrete beam structures were custom-built for measurement. The damping treatments using viscoelastic materials for reducing noise generation are also tested. The beam transfer function of the damped beam is predicted using the compressional damping model from which the mechanism of the vibration energy dissipation is investigated.

  • PDF

Semi-Empirical Analysis of the Mass Transfer Characteristics of the Slug Flow in Vertical Mesoscale Tubes (작은 수직관을 흐르는 슬러그 유동의 물질전달 특성에 대한 반경험적 해석)

  • Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.366-374
    • /
    • 2014
  • Experimental mass transfer data, which were obtained for the $CO_2$-water slug flows in vertical tubes with 2, 5, and 8mm diameters, were analyzed in comparison with the penetration theory. It was found that a penetration model with molecular diffusion coefficient cannot predict the experimental data accurately. An effective diffusion coefficient, which considers enhancement effect of interfacial waves, was suggested to improve prediction. Another empirical factor was also suggested to consider the effect of non-uniform interface velocity. A modified penetration model was found to be capable of predicting the experimental data reasonably well.

Variation Characteristic of Wave Field around 2-Dimensional Low-Crested-Breakwaters (2차원저천단구조물(LCS)의 주변에서 파동장의 변동특성)

  • Lee, Jun Hyeong;Jung, Uk Jin;Bae, Ju-Hyun;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.294-304
    • /
    • 2019
  • This study evaluates the variation characteristics of wave fields (transmission ratio, wave height, time-averaged velocity and time-averaged turbulent kinetic energy) for two-dimensional low-crested structure by olaFlow model based on the two-phases flow numerically. In addition, the present numerical results are verified by comparing with the existing experimental results. The time-averaged velocity, one of various numerical results is formed counterclockwise circulating cell on the front of structure and is occurred strong uni-directional flow on onshore side. It is shown that these are closely related to the factors such as overtopping, etc.

Improving Wave Propagation Performance of an Ultrasonic Waveguide for Heat Isolation (열 차단용 초음파 도파관의 전파성능 향상 연구)

  • 최인석;전한용;김인수;김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.545-553
    • /
    • 2003
  • This paper is concerned with protecting piezoelectric transducers used in an ultrasonic flowmeter from the high temperature of hot fluid in a pipe by using a waveguide and with improving the propagation of ultrasonic longitudinal vibration in the waveguide. Waveguide material has been chosen for efficient insulation of heat transferred in the waveguide, and the minimum length of the waveguide for protecting piezoelectric transducer has been estimated. Forced response of the longitudinal vibration in a uniform circular rod has been obtained and the length of the waveguide has been selected for maximum amplitude. Longitudinal vibration response of a conically-tapered rod excited at a natural frequency has been obtained to confirm that wave motion is amplified as the cross-sectional size of the waveguide decreases along the axial direction. The fact that dispersion of a pulse wave in a waveguide is reduced as the cross-sectional radius is decreased has been examined theoretically and confirmed experimentally by using a single-rod waveguide. A bundle-type waveguide has proven to be a practical one through the evaluation of the wave propagation performance.

Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance (흡수성능에 미치는 수직 액막 파동의 영향에 관한 연구)

  • 김정국;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-201
    • /
    • 2004
  • In the present study, the improvement of absorption characteristics on combined heat and mass transfer process in a falling film of a vertical absorber by change of geometric parameters were studied experimentally and analytically. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the liquid solution-refrigerant vapor interface and at the wall. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of the flow pattern by geometric parameters have been considered to observe the total heat and mass transfer rates through falling film along the absorber. As a numerical and experimental result, maximum absorption rate was shown at the wave-flow by insert device (spring). The error ranges between experiment and analysis were from 5.8 to 12% at Re$_{f}$ > 100.0.

Study on the Prediction of Absorption Performance by the Optimization of a Vertical Absorber (수직형 흡수기 최적화에 따른 흡수 성능 예측에 관한 연구)

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.194-202
    • /
    • 2005
  • The present study was analytically and experimentally carried out to predict the absorption characteristics on combined heat and mass transfer process in a vertical falling film of variable absorbers. Heat and mass transfer enhancements were analytically investigated. Effects of geometric parameters by insert device (spring) and corrugate, flow pattern on absorption performances has been also investigated. Especially, the optimal values of absorber geometry (ID=22.8mm, L=1150m) and kinetic variables (solution flow rate, flow pattern) for maximum absorption performance has been predicted by the numerical analysis. The maximum absorption performance in a numerical analysis and experiment was shown at the wavy-flow by insert device (spring).

Discrete-time approximation and modeling of a broadband underwater propagation channel based on eigenray analysis (고유 음선 분석에 기반한 광대역 수중음향 전달 채널의 이산시간 근사 및 모의 방법 연구)

  • Shin, Donghoon;Cho, Hyeon-Deok;Kwon, Taekik;Ahn, Jae-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.216-225
    • /
    • 2020
  • In this paper, broadband underwater propagation channel modeling based on eigenray analysis is discussed. Underwater channels are often formulated in frequency domain time-harmonic signals, which are impractical for simulating broadband signals in time domain. In this regard, time domain modeling of the underwater propagation channel is required for the simulation of broadband signals, for which the eigenray analysis based on ray tracing, resulting in multipath propagation delays in time-domain, is used in this paper. For discrete time system application, the phase, frequency-dependent loss and non-integer sample delays for each eigenray, are approximated by the finite impulse response of the broadband propagation channel.

Wave Control by Submerged Breakwater under the Solitary Wave(Tsunami) Action (고립파(지진해일) 작용하의 수중방파제에 의한 파랑제어)

  • Lee, Kwang Ho;Kim, Chang Hoon;Jeong, Seong Ho;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.323-334
    • /
    • 2008
  • Present study examined the functionality of the solitary wave (tsunami) control of the two-rowed porous submerged breakwater by numerical experiments, using a numerical wave tank which is based on the Navier-Stokes equation to explain fluid fields and uses a Volume of Fluid (VOF) method to capture the free water surface. Solitary wave was generated by the internal wave source installed within the computational zone in the numerical wave tank and its wave transformations by structure were compared with those in the previous study. Comparisons with the precious numerical results showed a good agreement. Based on these results, several tow-dimensional numerical modeling investigations of the water fields, including wave transformations, reflection, transmission and energy flux, by the one- and two-rowed permeable submerged breakwater under solitary waves were performed. Even if, it is a research of the limited scope, in case of two-rowed permeable submerged breakwater with $h_0/h=0.925$ ($h_0$ is height of submerged breakwater and h is water depth), the wave height damping in range of $l/L_{eff}>0.4$($L_{eff}$ is effective distance of solitary wave) can reach nearly 60% of the incident wave height. In addition, it is found that reflection coefficient increases nearly 47% and transmission coefficient decreases nearly 18% than one-rowed one. The numerical results revealed that the tow-rowed submerged breakwater can control the incident solitary wave economically and more efficiently than the one-rowed one.