• Title/Summary/Keyword: 파단모드

Search Result 70, Processing Time 0.025 seconds

Bending characteristics of ISB panel with dimple shapes as inner structures (딤플형 내부 구조체를 가진 ISB 판넬의 굽힘 강성 특성)

  • Ahn D.G.;Lee S.H.;Kim J.S.;Moon G.J.;Han G.Y.;Jung C.J.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.117-118
    • /
    • 2006
  • The objective of this paper is to investigate into bending and failure characteristics of ISB panel with dimple shapes as inner structures. Through three-points bending test, the force-displacement curve and the failure shape are obtained to examine the deformation pattern, characteristic data including maximum load and displacement at the maximum load and failure pattern for the ISB panel. In addition, the influence of design parameters for ISB panel on the bending stiffness and failure mode has been found. From the results of the experiments, it has been shown that bending and failure characteristics of the ISB panel can be controlled by the ratio of radius and the direction of the material.

  • PDF

Evaluation of Failure Mode and Strength on Baking Time of Adhesive for Hybrid Joining (접착제 경화시점에 따른 하이브리드 접합 파단모드 및 접합강도 평가)

  • Choi, Chul-Young;Saha, Dulal Chandra;Choi, Won-Ho;Kim, Jun-Ki;Kim, Jong-Hoon;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.49-55
    • /
    • 2011
  • With the development of pre-painted steel sheets for automotive body application, a new joining method is required such as hybrid joining with combination of adhesive bonding and mechanical joining. The objective of this study is to investigate the effect of pre- and post-baking of adhesive bonding on failure mode and strength of hybrid joining of automotive steel sheets. Experiments show that the hybrid joining exhibits better bonding strength and displacement than conventional adhesive joining and mechanical fastening each. Comparison of pre- and post-baked hybrid joining results suggested that baking at $160^{\circ}C$ after mechanical joining was found to have higher joining properties than pre-baking condition. The prebaking condition changed its fracture mode from interfacial to button fracture. The changes in fracture mode with post-baking of hybrid joining was attributed to variation in neck thickness and undercut of joint.

Analysis of High Velocity Impact on SFRC Panels Using ABAQUS (ABAQUS를 이용한 강섬유보강 콘크리트 패널의 고속 충돌 거동 해석)

  • Son, Seok-Kwon;Jang, Seok-Joon;Yun, Hyun-Do;Kim, Yong-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • This paper employed finite element method (FEM) to study the dynamic response of Steel Fiber-Reinforced Concrete(SFRC) panels subjected to impact loading by spherical projectiles. The material properties and non-linear stress-strain curves of SFRC were obtained by compression test and flexural test. Various parametric studies, such as the effect of fiber volume fraction and thickness of panels, are made and numerical analyses are compared with experiments conducted. It is shown that protective performance of concrete panels will be improved by adding steel fiber. Area loss rates and weight loss rates are decreased with increasing fiber volume fraction. Also, penetration modes can be expected by FEM, showing well agreement with experiment. Results can be applied for designing the protection of military structures and other facilities against high-velocity projectiles.

Reliability Analysis in Designing of Reinforced Soil Structures using Uni-Modal Bounds (단일모드 구간해법을 이용한 보강토옹벽 설계의 신뢰성해석)

  • Kim, Hyun-Ki;Lee, Sung-Hyouk;Choi, Chan-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.17-25
    • /
    • 2010
  • Evaluation of stability in traditional designing of reinforced soil structures is executed by examination of internal and external stability. Analysis of internal stability is for pull-out and ductile strength. Analysis of external stability is for settlement, overturning and sliding. To minimize inherent uncertainties of soil properties and analytical model, reliability analysis was developed recently. In this study, reliability analysis method considering simultaneous failure probability for various failure mode of internal and external stability is proposed. By applying uni-modal bounds, Stability of system reliability of reinforced soil structures is evaluated by integrating multi failure mode for various analytical model. Because of complex consideration for various failure shapes and modes, it is possible to secure advanced safety by using simultaneous failure probability. And evaluation of reinforced soil structure is executed by representative index, simultaneous failure probability, than previous method.

  • PDF

Mixed Mode Fatigue Crack Propagation Behavior due to The Variation of Stress Ratio (응력비의 변화에 따른 혼합 모드 피로 균열 전파 거동)

  • Song, Sam-Hong;Choi, Ji-Hoon;Lee, Jeong-Moo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.286-291
    • /
    • 2001
  • Most cracks in the structure occur under mixed mode loadings and those propagation depend on the stress ratio very much. So, it is necessary to study the fatigue behavior under mixed mode loading as stress ratio changes. In this paper, fatigue crack propagation behavior was investigated respectively at stress ratio 0.1, 0.3, 0.5, 0.7 and we change loading application angle to $0^{\circ},\;30^{\circ},\;60^{\circ}$ to apply various loading. mode. The mode I and II stress intensity factors of CTS specimen used in this study were calculated by displacement extrapolation method using FEM(ABAQUS). Using both the study through the experiment and the theoretical study through FEM analysis, we studied the relation between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress condition and given loading mode condition, we studied what the dominant factors of the crack propagation rate were at each case.

  • PDF

Relationship between Pattern of Fatigue Crack Surface and Fatigue Crack Growth Behavior under $K_{III}$ Mode-Four Point Shear in Al 5083-O (Al 5083-O재에 있어서 $K_{III}$ 모드 4점 전단 하에서의 피로파단면 무늬와 피로균열진전거동의 관계)

  • Kim, Gun-Ho;Won, Young-Jun;Sakakura, Keigo;Fujimoto, Takehiro;Nishioka, Toshihisa
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.43-44
    • /
    • 2006
  • Generally almost all fatigue crack growth is affected by model. For this reason a study on model has concentrated in the field of fracture mechanics. However the fatigue crack initiation and growth in machines and structures usually occur in mixed mode loading. If there is any relationship between the cause of fracture in mixed mode loading and fracture surface, fracture surface pattern will be the main mean explaining reasons of fatigue fracture and obtaining further information about fracture process. In this paper four point shear-fatigue test with Aluminum alloy Al 5083-O is carried out from this prospect and then the mixed mode distribution of fracture surface is examined from the result after identifying the generation of fatigue crack surface pattern. It was found from the experimental results that the fatigue crack surface pattern and the fatigue crack shear direction are remarkably consistent. Furthermore It is possible that the analysis of distribution of mixed mode through the fatigue crack surface pattern.

  • PDF

Experimental Study of Flexural Behavior of Steel Beam Strengthened with the Fiber Reinforced Polymer Plastic(FRP) Strips (섬유보강플라스틱(FRP) 스트립으로 보강한 철골보의 휨거동에 관한 실험적연구)

  • Choi, Sung Mo;Park, Jai Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.69-79
    • /
    • 2014
  • This paper presents the experimental results of flexural behavior of steel beam strengthened with fiber reinforced polymer plastic (FRP) strips subjected to static bending loading. Four H beams were fabricated strengthened with aramid strips and carbon strips and one control specimen were also fabricated. Among them two specimens were strengthened with partial length. The H-beams had two types of failure mode, depending on the length of the FRP strips:(1) strip debonding in beams with partial length reinforcement and (2) strip rupture in beams with full length reinforcement. From the test, it was observed that maximum increase of 16% was also achieved in bending-load capacity.

Development of Risk Assessment Techniques for City Gas Pipeline II - Corrosion Analysis (도시가스배관 위험평가기술 개발 II - 부식 평가)

  • Park Kyo-Shik;Lee Jin-Han;Jo Young-Do;Park Jin-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.1-6
    • /
    • 2003
  • In this work, procedure evaluating failure modes such as pipe rupture, large scale leak, and small scale leak was suggested using equations to assess remaining strength by corrosion failure. Additionally, the method to predict probability of failure was suggested according to the aforementioned failure modes, and by combining data on corrosion rate, probability of long-term failure can be induced. This work will be very useful in predicting lifetime or exchanging period of pipeline.

  • PDF

An Experimental Study on the Effective Strain of Reinforced Concrete Beams Strengthened by Fiber Reinforced Polymer (FRP로 보강된 철근콘크리트 보의 유효 변형률 예측에 대한 실험적 연구)

  • Hwang, Hyun-Bok;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.145-151
    • /
    • 2007
  • The shear failure modes of FRP strengthened concrete beams are quite different to those of the beams strengthened with steel stirrups. When the beams are externally wrapped with FRP composites, many beams fail in shear due to concrete crushing before the FRP reaches its rupture strain. In order to predict the shear strength of such beams, the effective strain of the FRP must be blown. This paper presents the results of an experimental study on the performance of reinforced concrete beams externally wrapped with FRP composites and infernally reinforced with steel stirrups. The main parameters of the tests were FRP reinforcement ratio, the type of fiber material (carbon or glass) and configuration (continues sheets or strips). The experimentally observed effective strain of the FRP was compared with the strain calculated using a proposed method.

Identification of Impact Damage in Smart Composite Laminates Using PVDF Sensor Signals (고분자 압전센서 신호를 이용한 스마트 복합적층판의 충격 손상 규명)

  • Lee, Hong-Young;Kim, In-Gul;Park, Chan-Yik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.51-59
    • /
    • 2004
  • An experimental procedure to identify failure modes of impact damage using sensor signals and to analyze their general features is examined. A series of low-velocity impact tests from low energy to damage-induced high energy were performed on the instrumented drop weight impact tester to monitor the stress wave signals due to failure modes such as matrix cracking, delamination, and fiber breakage. The wavelet transform(WT) and Short Time Fourier Transform(STFT) are used to decompose the piezoelectric sensor signals in this study. The extent of the damage in each case was examined by means of a conventional ultrasonic C-scan. The PVDF sensor signals are shown to carry important information regarding the nature of the impact process that can be extracted from the careful signal processing and analysis.