• Title/Summary/Keyword: 파괴변형률

Search Result 434, Processing Time 0.024 seconds

Tests on Failure of Steel Angles due to Very Low-Cycle Fatigue of Loading (극저사이클 재하하에서 앵글 강부재의 파괴실험)

  • Park, Yeon Soo;Kim, Sung Chil;Lim, Jung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4_1
    • /
    • pp.23-32
    • /
    • 1992
  • The objective of this study is to identify the quantitative relationships among the important physical factors associated with failure of steel members under strong seismic excitations through very low-cycle fatigue tests. Very low-cycle fatigue is meant to be structural fatigue causing cracks and rupture in about 5~30 cycle ranges. The angle specimen was subjected to repeated axial Ioad after undergoing inelastic buckling. The test results reveal that the energy absorption capacities vary heavily with the history of loading and the failure mode. The maximum values of residual local strain at the initiation of a visible crack due to the very low-cycle fatigue were of the order of 25~40%, regardless of loading patterns, deflection modes, and width-to-thickness ratios.

  • PDF

A Study on the Characteristics of Direct Tensile Fatigue of the Domestic PS Bar at High Stress Range (국산 PS 강봉의 고응력범위에서의 직접 인장피로 특성)

  • Yoo, Sung Won;Suh, Jeong In
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.137-145
    • /
    • 2003
  • In this study, direct tensile fatigue tests of the PS bar were performed in terms of diameter, minimum stress level, and maximum stress level. In the static test, the stress - strain curve and ultimate streng th of the PS bar were determined. Results of the fatigue test indicate that the diameter of the PS bar was not influenced by fatigue life. Minimum stress also had quite an influence on the fatigue of the PS bar. Thus, the fatigue characteristic equation was proposed in terms of stress range and minimum stress through statistical process. Strains on specimen that loaded direct tension were measured in the fatigue test, with the secant modulus of elasticity calculated from measured strains. The strain development consisted of three different stages, i.e., rapid increases during the initial fatigue life, uniform increases during the middle stage, and rapid increases until failure. The secant modulus of elasticity decreased during the fatigue life with increasing strain. However, stress level seemed to have no influence on the secant modulus of elasticity.

Uniaxial Compression Behavior of RC Columns Confined by Carbon Fiber Sheet Wraps (탄소섬유쉬트로 구속된 RC 기둥의 일축압축 거동)

  • Han, Sang-Hoon;Hong, Ki-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.207-216
    • /
    • 2005
  • External confinement by CFS (Carbon Fiber Sheet) is a very effective retrofit method for the reinforced concrete columns subject to either static or seismic loads. For the reliable and cost-effective design of CFS, an accurate stress-strain model is required for CFS-confined concrete. In this paper, uniaxial compression test on short RC column with square section was performed. To evaluate the effect of confinement on the stress-strain relationship of CFS-confined concrete, CFS area ratio and tie area ratio are considered. Based on the experimental results, a stress-strain model is proposed for concrete confined by CFS wraps. In the development of the model, the method to compute the actual hoop strains in CFS jackets at the rupture was examined and resolved. Overall, the results of the model agree well with test data.

A Prediction of the Behavior in Normally Consolidated Clay with Application of Isotropic Single Hardening Constitutive Model (등방단일경화구성모델에 의한 정규압밀점토의 거동 예측)

  • 홍원표;남정만
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.9-18
    • /
    • 1996
  • The results of a series of triaxial compression tests on remolded normally consolidated clay are compared with the predictions .by the isotropic single -hardening constitutive model, which incorporates eleven parameters. The parameters can be determined from undrained triaxial compression tests on isotropically consolidated specimens of remolded clay. The model with the determined parameters is applied to predict the stress-strain and pore pressure behaviors for untrained triaxial compresion tests on anisotropically consolidated specimens. Also the model is utilized to predict the stress strain and voltmetric strain behavior for drained triaxial compression tests on both isotropic and anisotropic specimens. The predicted response agrees well with the measured behavior for undrained triaxial compression tests on not only isotropically but also anisotroically but also anisotropically consolidated specimens. The initial volumetric strain is, however, predicted to be less than the measured value from drained triaxial compression tests, while the predicted volumetric strain close to failure is greater than the measured value. Nevertheless, it may be stated generally that overall acceptable predictions are produced. Therefore, the results of this study indicate that the applicability of the model on prediction of the behavior of normally consolidated clay is achieved sufficiently.

  • PDF

Shear Strength Estimation of Clean Sands via Shear Wave Velocity (전단파 속도를 통한 모래의 전단강도 예측)

  • Yoo, Jin-Kwon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.17-27
    • /
    • 2015
  • We perform a series of experimental tests to evaluate whether the shear strength of clean sands can be reliably predicted from shear wave velocity. Isotropic drained triaxial tests on clean sands reconstituted at different relative densities are performed to measure the shear strength and bender elements are used to measure the shear wave velocity. Laboratory tests reveal that a correlation between shear wave velocity, void ratio, and confining pressure can be made. The correlation can be used to determine the void ratio from measured shear wave velocity, from which the shear strength is predicted. We also show that a unique relationship exists between maximum shear modulus and effective axial stress at failure. The accuracy of the equation can be enhanced by including the normalized confining pressure in the equation. Comparisons between measured and predicted effective friction angle demonstrate that the proposed equation can accurately predict the internal friction angle of granular soils, accounting for the effect of the relative density, from shear wave velocity.

A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams (철근(鐵筋)콘크리트보의 전단피로거동(剪斷疲勞擧動)에 관(關)한 연구(硏究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.173-185
    • /
    • 1988
  • This study is intended to investigate the shear fatigue behaviour of reinforced concrete beams based on a series of experiments, and verify the test results in comparison with the analysis result obtained by using a nonlinear finite element method. The experiments are divided into the tests under the static loading and the test under the dynamic fatigue loading. In order to investigate the shear failure behaviour under static loadings, four specimens for three different cases were made and tested. The behaviour of stirrups with the static stress and strain variations were observed based on the results of these tests. In the fatigue fracture tests, eleven specimens for four different cases were made and tested. Various observations on mid-span deflection of test beams and tensile strains of reinforcing steels as well as stirrups were made against various fatigue loadings. It may be concluded that the shear fatigue strengths of R.C. specimens at one million cycles turn out to be approximately 65 percent of the static ultimate shear strength.

  • PDF

An Experimental Study on Shear Behavior of Internal Reinforced Concrete Beam-Column Assembly (철근콘크리트 보-기둥 내부 접합부의 전단 거동에 관한 실험적 연구)

  • Lee, Jung-Yoon;Kim, Jin-Young;Oh, Ki-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.441-448
    • /
    • 2007
  • The beam-column assembly in a ductile reinforced concrete (RC) frames subjected to seismic loading are generally controlled by shear and bond mechanisms, both of which exhibit poor hysteretic properties. Hence the response of joints is restricted essentially to the elastic domain. The usual earthquake resistant design philosophy of ductile frame buildings allows the beams to form plastic hinges adjacent to beam-column assembly. Increased strain in these plastic hinge regions affect on joint strain to be increased. Thus bond and shear joint strength are decreased. The research reported in this paper presents the test results of five RC beam-column assembly after developing plastic hinges in beams. Main parameter of the test Joints was the amount of the longitudinal tensile reinforcement of the beams. Test results indicted that the ductile capacity of joints increased as the longitudinal tensile reinforcement of the beams decreased. In addition, both the tensile strain of the longitudinal reinforcement bars in the joint and the ductile ratio of the beam-column assemblages increased due to the yielding of steel bars in the plastic hinge regions.

Numerical Analysis of Viscoelastic Cylinders with Mode I Cracks (점탄성 원통의 모드 I 균열 해석)

  • Sim Woo-Jin;Oh Guen
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.259-269
    • /
    • 2006
  • In this paper, the stress intensity factor, energy release rate and crack opening displacement are computed using the finite element method for axisymmetric viscoelastic cylinders with the penny-shaped and circumferential cracks. The triangular elements with quarter point nodes are used to describe the stress singularity around the crack edge. The analytical solutions are also derived by using the elastic-viscoelastic correspondence principle and compared with the numerical results to show the validity and accuracy of the presented method. Viscoelastic materials are assumed to behave elastically in dilatation and like a three-parameter standard linear solid.

The Stress-Strain Behavior of a Pure Silt Compared with Sand and Clay (사질토 및 점성토와 비교한 순수 실트의 응력 -변형률 거동)

  • 정상섬
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.27-36
    • /
    • 1993
  • The drained and undrained behavior of pure silt was investigated experimentally. Special attention was given to the stress-strain behavior of silt prior to failure and behavior at failure under monotonic and cyclic loading. A pure silica flour was chosen to form samples with two different densities of D,=80%, eo=0.68 and D,=35%, eo=0.9. The isotropically consolidated samples were tested in the triaxial testing device under monotonic undrained, drained compression and extension conditions. Also samples were tested under cyclic undrained condition. Based on the experimental results. it was qualitively identified that the overall behavior of silt is similar to that of sand. When compared with clay, silt shows a significantly different behavior due to its dilatant nature under both the monotonic and cyclic shear loadings.

  • PDF

A Study on the Effect of Transportation and Storage on Sample Disturbance (시료의 이동과 보관이 시료 교란에 미치는 영향에 관한 연구)

  • Kim, Byoung-Il;Lee, Seung-Hyun;Yoo, Wan-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1159-1165
    • /
    • 2007
  • This study aims to determine the effects of sample movement and storage on sample disturbance. To this end, non-disturbed samples collected from the OOregion, Gwangyang City, Jeonranam-do. Then, unconfined compression and consolidation tests were performed on the samples in the field, Seoul Lab and Seoul Lab after 4 weeks. Based on failure strain rate$(\epsilon_f)$, volume strain rate$(\epsilon_{\nu})$, and void ratio change$({\Delta}e/e_0)$ obtained from the test results, sample disturbance was evaluated. The sample disturbance level was used to compare and analyze the influences of transportation and storage on sample disturbance.

  • PDF