• Title/Summary/Keyword: 파괴개시인성

Search Result 26, Processing Time 0.024 seconds

Fracture Properties of High Strength Concrete Disk with Center-Crack (중앙에 노치가 있는 고강도 콘크리트 디스크의 파괴특성)

  • 진치섭;김희성;박현재;김민철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.161-167
    • /
    • 2001
  • It is difficult to obtain accurate fracture toughness values using three point bending test(TPB) proposed by RILEM committees because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, fracture toughness is easily obtained from crack initiation load in the disk test. In this paper, the fracture properties of high strength concrete disks with center-crack was investigated. For this purpose, the experimental results were compared with the results by finite element analysis(FEA). And the experimental fracture locus was compared with theoretical fracture locus. Also, the results of fracture properties for the degree of concrete strength are presented. It is concluded from this study that results from FEA with maximum stress theory were compared well with the results from experiment. And the degree of concrete strength was contributed to the crack initiation load and fracture toughness, but was not contributed to the failure angle. Also, The discrepancy of fracture locus between the maximum stress theory and the experiment for concrete is considered to depend upon a large energy requirement for inducing the mixed-mode and sliding mode fractures.

Development of Fracture Toughness Evaluation Method for Composite Materials by Non-Destructive Testing Method (비파괴검사법을 이용한 복합재료의 파괴인성 평가법 개발)

  • Lee, Y.T.;Kim, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.278-291
    • /
    • 1998
  • Fracture process of continuous fiber reinforced composites is very complex because various fracture mechanisms such as matrix cracking, debonding, delamination and fiber breaking occur simultaneously during crack growth. If fibers cause crack bridging during crack growth, the stable crack growth and unstable crack growth appear repeatedly. Therefore, it is very difficult to exactly determine tile starting point of crack growth and the fracture toughness at the critical crack length in composites. In this research, fracture toughness test for CFRP was accomplished by using acoustic emission(AE) and recording of tile fracture process in real time by video-microscope. The starting point of crack growth, pop-in point and the point of unstable crack growth can be exactly determined. Each fracture mechanism can be classified by analyzing the fracture process through AE and video-microscope. The more reliable method ior the fracture toughness measurement of composite materials was proposed by using the combination of R-curve method, AE and video microscope.

  • PDF

Microscopic fracture criterion of crack growth initiation (연성 균열성장 개시의 미시적 파괴조건)

  • 구인회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.740-745
    • /
    • 1987
  • For the prediction of the crack growth initiation from a blunt notch or a precrack in a prestrained material under plane strain tension and small-scale yielding conditions, a microscopic fracture criterion is proposed in terms of the crack tip opening displacement(COD) needed for the attainment of fracture strain at a microstructural distance. Smooth blunting of a crack tip with an initial root radius is assumed, and strain distributions on the crack-line axis are calculated at each deformation stage until the distributions against an original distance normalized to the COD are insensitive to an initial root radius. This case of no initial-root-radius effect is taken as for a sharp crack tip, on which the criterion is applied to determine the characteristic length of material from a critical COD for a fatigue-precracked specimen. The predicted COD at the fracture initiation from a crack with an initial root radius or a prestraining shows reasonable agreement with experimental values.

Dynamic Crack Initiation of 17-4PH Casting Steel for Various Notch Radius (다양한 노치 반경을 갖는 17-4PH강의 동적균열개시 특성)

  • 박성욱;김덕회;김재훈;문순일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.160-163
    • /
    • 2003
  • In this study, intrinsic dynamic fracture toughness of 17-4PH casting steel is evaluated from the apparent dynamic fracture toughness of notched specimen. Notch radius of notched specimen is manufactured from 0.1mm to 4mm. The results shows that dynamic fracture toughness decreases with decreasing of notch root radius above critical notch roof radius. The true dynamic fracture toughness can be predicted from test results of apparent dynamic fracture toughness measured by using notched specimen.

  • PDF

An analysis of the Reacture Inutuation of falling type Impact Test for toughened Rigid Plastics (인성의 강소성 플라스틱 재료에 대한 낙하충격 시험의 파괴개시에 관한 연구)

  • 김진우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.4
    • /
    • pp.385-393
    • /
    • 1984
  • 본 연구에서는 다트식 낙하충격 시험에 있어서 인성의 강소성 플라스틱 재료 의 준정적 선형의 점탄성 모델이 구성되어 해석되었다. 완화계수함수, E(t)=E$_{f}$ +(E$_{o}$ -E$_{f}$ )e$^{-t/tR}$ 형태의 점탄성 재료의 수정된 Maxwell요소모델을 근거 로 충격속도, 파괴에너지, 임계응력등의 중요변수들의 상대적 종속성이 근사계산으로 평가되었다.

Cure Behaviors and Mechanical Interfacial Properties of Epoxy/Polyurethane Blends Initiated by Latent Thermal Catalyst (열잠재성 개시제에 의한 에폭시/폴리우레탄 블렌드의 경화거동 및 파괴인성)

  • Park, Soo-Jin;Seok, Su-Ja;Kang, Jun-Gil;Kwon, Soo-Han
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.42-50
    • /
    • 2004
  • In this work, the diglycidylether of bisphenol A (DGEBA) and modified polyurethane (PU) blends were initiated by N-benzylpyrazinium hexafluoroantimonate (BPH). The cure and fracture toughness of neat DGEBA with the addition of PU were investigated. The cure properties of DGEBA/PU blend system were examined by DSC and near-IR measurements. The fracture touhtness were investigated by measuring the critical stress intensity factor ($K_{IC}$) and the critical strain energy release rate ($G_{IC}$). According to the results, the maximum values of owe activation energy ($E_a$) and conversion (${\alpha}$) were found at 10 phr of PU. Also the $K_{IC}$ showed a similar behavior with the results of conversion. These results were probably due to increase of crosslinking density in the blends resulted from increase of the hydrogen bonding between the hydroxyl groups of DGEBA and isocyanate groups of PU.

Application of Fracture Toughness for Scaled Model Test (파괴인성의 축소모형실험 적용 연구)

  • Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.87-97
    • /
    • 2020
  • Fracture toughness of rock is a constant that can indicate the initiation and propagation of cracks due to blasting, excavation, etc. Scaled model tests have been applied to the behavior of tunnels and the stability of limestone mines. Through the scaled model, damaged zone evaluation due to blasting is also carried out, and the scale factor is not applied to the failure-related factors. In this study, DCT (diametral compression test) and finite element method ATENA2D numerical analysis results were compared to determine whether the scale factor could be applied to the fracture toughness of rock. The theoretical values of the scale factor applied to the fracture toughness of the rock and the DCT test results and the numerical results are 0.21~0.46, 0.40, and 0.99MPa ${\sqrt{m}}$ respectively, so these three values should be considered when determining scale factor. It is necessary to derive a suitable scale factor in consideration of the length, time, and mass to which the scale factor is applied, as well as the values of the scale factor of major design factors such as uniaxial compressive strength and density.

구조 용강의 연성파괴에서 최대하중 예측

  • 구인회
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.47-58
    • /
    • 1992
  • 탄소성 재료의 파괴에서 최대하중을 계산할 수 있는 방법이 제시되었다. 사용된 재 료상수는 파괴개시인성, 항복강도, 진행된 균열선단에서 열림 변위 증분에 대한 균열성장의 비이고, 계산을 실험결과에 맞추어 재료상수를 결정한다. 이들 상수로 다른 시편의 최대하 중을 계산하는 간단한 방법을 평면변형하의 A572 강(상온)과 4533(B)강(-10C)에 적용하여 기존의 실험결과와 비교하였다. 또한 균열 선단 열림 변위와 J-적분값에 기초한 다른 방법 과 비교·논의되었다.

  • PDF

An Evaluation of Dynamic Crack Initiation Toughness in SS41 Steel Welding (SS41강 용접부의 동적균열개시인성 평가)

  • 정재강;김건호
    • Journal of Welding and Joining
    • /
    • v.12 no.2
    • /
    • pp.108-118
    • /
    • 1994
  • In the present study, the dynamic crack initiation toughness and total absorbed energy behavior of Heat Affected Zone(HAZ) was experimentally evaluated for SS41 steel welding. The materials were submerged arc-welded SS41 steel plate with thickness 19mm. The test temperature range was from $20^{\circ}C$(room temperature) to $-70^{\circ}C$ The HAZ of welding were divided into three sub-zones for analysis; H1, H2, H3, according to the distance from the fushion line. From the experimental studies, the reference value of dynamic crack initiation toughness $(J_{Id(R)})$ can be use to estimate dynamic fracture toughness characteristics of steel welding.

  • PDF