• Title/Summary/Keyword: 팁 블레이드

Search Result 46, Processing Time 0.022 seconds

Effect of Groove Shape of Blade Tip on Tip Surface Heat Transfer Coefficient Distributions of a Turbine Cascade (블레이드 팁의 Groove 형상이 터빈 캐스케이드 팁 열전달 계수분포에 미치는 영향에 대한 실험적 연구)

  • Nho, Young-Cheol;Jo, Yong-Hwa;Lee, Yong-Jin;Kim, Hark-Bong;Kwak, Jae-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.60-68
    • /
    • 2010
  • In this study, the conventional plane tip, double squealer tip, and various groove tip blades were tested in a linear cascade in order to measure the effect of the tip shapes on tip surface heat transfer coefficient distributions. Detailed heat transfer coefficient distributions were measured using a hue-detection based transient liquid crystals technique. Two tip gap clearances of 1.5% and 2.3% of blade span were investigated and the Reynolds number based on cascade exit velocity and chord length was $2.48{\times}10^5$. Results showed that the overall heat transfer coefficients on the tip surface with various grooved tips were lower than those with plane tip blade. The overall heat transfer coefficient on grooved along suction side tip was lower than that on the squealer tip.

Effect of Groove Shape of Blade Tip on Tip Surface Heat Transfer Coefficient Distributions of a Turbine Cascade (블레이드 팁의 Groove 형상이 터빈 캐스케이드 팁 열전달 계수분포에 미치는 영향에 대한 실험적 연구)

  • Nho, Young-Cheol;Jo, Yong-Hwa;Lee, Youn-Jin;Kim, Hark-Bong;Kwak, Jae-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.311-318
    • /
    • 2010
  • In this study, the conventional plane tip, double squealer tip, and various groove tip blades were tested in a linear cascade in order to measure the effect of the tip shapes on tip surface heat transfer coefficient distributions. Detailed heat transfer coefficient distributions were measured using a hue-detection based transient liquid crystals technique. Two tip gap clearances of 1.5% and 2.3% of blade span were investigated and the Reynolds number based on cascade exit velocity and chord length was $2.48{\times}10^5$. Results showed that the overall heat transfer coefficients on the tip surface with various grooved tips were lower than those with plane tip blade. The overall heat transfer coefficient on grooved along suction side tip was lower than that on the squealer tip.

  • PDF

Numerical Analysis of Heat Transfer and Flow Characteristics on Squealer Tip of Gas Turbine Blade (가스터빈 블레이드 팁의 열전달과 유동 특성에 대한 수치적 해석)

  • Jiao, Liu;Kang, Youngseok;Kim, Donghwa;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1062-1070
    • /
    • 2016
  • The heat transfer and flow characteristics of gas turbine blade tip were investigated in this paper by using the conjugate heat transfer analysis. The rotor inlet boundary condition profile which was taken from the first stage nozzle outlet was used to analyse. The profile contained the velocity and temperature information. This study presents the influence of tip clearance about aerodynamic loss, heat transfer coefficient and film cooling effectiveness with the squealer tip designed blade model which tip clearance variation range from 1% to 2.5% of span. Results showed that the aerodynamic loss and the heat transfer coefficient were increased when the tip clearance was increased. Especially when the tip clearance was 2% of the span, the average heat transfer coefficient on the tip region was increased obviously. The film cooling effectiveness of tip region was increasing with decreasing of the tip clearance. There was high film cooling effectiveness at cavity and near tip hole region.

차세대 로터 블레이드 형상정의 및 공력소음 해석

  • Yee, Kwan-Jung;Hwang, Chang-Jeon;Joo, Gene
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.35-43
    • /
    • 2003
  • In this study, a rotor planform shape with high performance and low noise has been designed and its aerodynamic and aeroacoustic characteristics are analysed. First of all, rotor blade planform with low noise characteristics, has been designed based on the paddle-shape blade by applying vane-tip concept. Finally, noise characteristics of the designed next-generation rotor blade have been investigated and the results are compared with those of BERP blade.

  • PDF

A study of Main Rotor Blade Tip shape and analysis of flow around Main Rotor Blade Tip (Main Rotor Blade Tip 형상 변화에 따른 유동분석)

  • Kim, Se-Il
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.382-386
    • /
    • 2013
  • 본 연구에서는 Main Rotor Blade Tip 형상 변화에 따른 후류해석을 통해 와류 생성 및 주변 유동을 분석하여 블레이드 팁 형상의 변화가 와류 간섭을 감소시키는지의 여부를 확인하였다. EDISON CFD를 이용하여 블레이드 Blade Tip 형상에 따라 유동이 어떻게 나타나며, Blade 후류의 압력과 점성의 변화를 분석하여 와류의 양상을 해석하였다. 비교 Blade 형상은 2세대 긴 직사각형 모형, KUH 수리온의 Blade, 유로콥터사의 'Blue Edge'로 비교적 최근에 개발된 대표적인 Blade Tip 형상 3개로 정하였다. 결과를 토대로 블레이드 뒷전의 와류흐름 양상을 확인하여 블레이드 와류 간섭현상의 감소를 확인하였다.

  • PDF

Design and Structural Safety Evaluation of 1MW Class Tidal Current Turbine Blade applied Composite Materials (복합재료를 적용한 1MW급 조류 발전 터빈 블레이드의 설계와 구조 안전성 평가)

  • Haechang Jeong;Min-seon Choi;Changjo Yang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1222-1230
    • /
    • 2022
  • The rotor blade is an important component of a tidal stream turbine and is affected by a large thrust force and load due to the high density of seawater. Therefore, the performance must be secured through the geometrical and structural design of the blade and the blade structural safety to which the composite material is applied. In this study, a 1 MW class large turbine blade was designed using the blade element momentum (BEM) theory. GFRP is a fiber-reinforced plastic used for turbine blade materials. A sandwich structure was applied with CFRP to lay-up the blade cross-section. In addition, to evaluate structural safety according to flow variations, static load analysis within the linear elasticity range was performed using the fluid-structure interactive (FSI) method. Structural safety was evaluated by analyzing tip deflection, strain, and failure index of the blade due to bending moment. As a result, Model-B was able to reduce blade tip deflection and weight. In addition, safety could be secured by indicating that the failure index, inverse reserve factor (IRF), was 1 or less in all load ranges excluding 3.0*Vr of Model-A. In the future, structural safety will be evaluated by applying various failure theories and redesigning the laminated pattern as well as the change of blade material.

Rotor-Blade Shape Design and Power-Performance Analysis for Horizontal-Axis Tidal Turbine Using CFD (수평축 조류발전용 로터 블레이드 형상설계 및 CFD에 의한 출력성능해석)

  • Jung, Ji Hyun;Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.661-668
    • /
    • 2015
  • We present a design methodology for horizontal-axis tidal turbine blades based on blade element momentum theory, which has been used for aerodynamic design and power-performance analysis in the wind-energy industry. We design a 2-blade-type 1 MW HATT blade, which consists of a single airfoil (S814), and we present the detailed design parameters in this paper. Tidal turbine blades can experience cavitation problems at the blade-tip region, and this should be seriously considered during the early design stage. We perform computational fluid dynamics (CFD) simulations considering the cavitation model to predict the power performance and to investigate the flow characteristics of the blade. The maximum power coefficient is shown to be about 47 under the condition where TSR = 7, and we observed cavitation on the suction and pressure sides of the blade.

Heat Transfer Coefficients on a Gas Turbine Blade Tip and Near Tip Regions (가스 터빈 블레이드 팁과 그 주변에서의 열전달 계수)

  • Kwak, Jae-Su
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.430-435
    • /
    • 2003
  • Detailed heat transfer coefficient distributions on a gas turbine blade tip were measured using a hue-detection base transient liquid crystals technique. The heat transfer coefficients on the shroud and near tip regions of the pressure and suction sides of a blade were also measured. Both plane tip and squealer tip blade were considered. The heat transfer measurements were taken at the three different tip gap clearance of 1.0%, 1.5%, and 2.5% of blade span. Results show the overall heat transfer coefficients on the tip and shroud with squealer tip blade were lower than those with plane tip blade. However, the reductions of heat transfer coefficients near the tip regions of the pressure and suction sides were not remarkable.

  • PDF

Airfoil design for active load control wind turbine blade (능동하중제어 블레이드 적용을 위한 에어포일 설계)

  • Shin, Hyung-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.449-452
    • /
    • 2009
  • 본 연구에서는 소형 플랩을 채용하여 능동하중제어를 이루고자하는 풍력 블레이드의 적용을 염두해 둔 에어포일 설계를 수행하였다. 블레이드 팁 부분에 플랩을 적용하고자 하는 경우 플랩의 구동장치, 연결 부위 등의 장치 설치를 위한 공간이 블레이드 내부에 필요하다. 이를 위하여 기존의 에어포일의 성능을 유지하면서 뒷전의 두께비가 증가된 에어포일 형상의 설계가 필요하다. 최적설계를 위하여는 MIGA(Multi- Island Genetic Algorithm)을 채용하였으며 에어포일의 성능 계산을 위하여는 Xfoil을 결합하였다. 또한 형상 생성을 위하여 Hick-Henne 형상 함수를 이용하였다. 위와 같은 방법으로 설계된 에어포일은 코드길이 85% 위치에서 두께비 6.3%,양항비 133을 가지게 되어 기본으로 설정한 DU180 에어포일에 비해 성능과 필요 두께비를 모두 능가하는 에어포일이 되었다.

  • PDF

Airfoil design for active load control wind turbine blade (능동하중제어 블레이드 적용을 위한 에어포일 설계)

  • Shin, Hyung-Ki
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.29-32
    • /
    • 2009
  • 본 연구에서는 소형 플랩을 채용하여 능동하중제어를 이루고자하는 풍력블레이드의 적용을 염두해 둔 에어포일 설계를 수행하였다. 블레이드 팁 부분에 플랩을 적용하고자 하는 경우 플랩의 구동 장치, 연결 부위 등의 장치 설치를 위한 공간이 블레이드 내부에 필요하다. 이를 위하여 기존의 에어포일의 성능을 유지하면서 뒷전의 두께비가 증가된 에어포일 형상의 설계가 필요하다. 최적설계를 위하여는 MIGA(Multi-Island Genetic Algorithm)을 채용하였으며 에어포일의 성능 계산을 위하여는 Xfoil을 결합하였다. 또한 형상 생성을 위하여 Hick-Henne 형상 함수를 이용하였다. 위와 같은 방법으로 설계된 에어포일은 코드길이 85% 위치에서 두께비 6.3%,양항비 133을 가지게 되어 기본으로 설정한 DU180에어포일에 비해 성능과 필요 두께비를 모두 능가하는 에어포일이 되었다.

  • PDF